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Abstract
In this work, we study and analyse state-of-the-art learning algorithms of non-linear dynamical
systems, control and autonomy with scalable optimization algorithms and additional statistical as-
sumptions in high dimensional framework. This work establish three learning algorithms, namely
a. learning of a non-linear dynamical system, b. learning a Lyapunov function of the learned
system, and c. learning control & decision making with improved generalization assumptions for
generalization bounds and computational complexities. This work particularly involved around the
norm, the criterion function & regularized term, the design matrix and the noise model. The ad-
vantages of the approach for learning algorithms, stabilization and control are illustrated with few
results featuring robust formulations and regularization with kernel embeddings.

1. Introduction

A mathematical & statistical modelling of dynamical systems & control involve two alternative
approaches:

(a.) a physics based laws and first principle derive a forward dynamical system and then extrapo-
lating locally.

(b.) a data driven based constrained under physical observation derive an inverse modelling of a
unknown dynamical system, and then finally interpolating globally.

Our emphasis is the second one, may be considered as an advancement of system identification
(SI). Since, SI cannot incorporate physic based first principle information of the system (e.g. com-
pact representation, multi-modality etc.), and computational intractability due to time dependencies,
large sample size, high dimensional estimation & inference. Furthermore, reliance on analytic abil-
ity of least-squares (in low or moderate dimensional framework) leaves the system identification
process vulnerable to model misspecification, including outliers in the observations. In summary,
learning system dynamics with big data involves either high dimensional statistics or large sample
theory for parameter estimation & generalization bounds..
Inspired by the emergence learning dynamical system (in the interface of computational mathe-
matics & machine intelligence) and its applicability to autonomous control [1, 7, 8], in this paper,
we aim at developing and generalizing learning algorithms of non-linear internal state space model
based on statistical learning framework and kernel embedding of original state space to a suitable a
RKHS. The main contributions of this paper are as follows:

(a.) mixing-time based IID approximation of dependency in data under one-point convexity and
smooth loss function and bounded, Lipschitz, stable flow of the system.
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(b.) capturing non-linearity with an adaptive kernel embedding.

(c.) regularized high dimensional parameter estimation.

(c.) generalization bounds and robust learning algorithms via uniform convergence of loss and its
gradient.

2. Problem formulation and results

In this work, we learn a non-linear dynamical system ẋ = f(x), f : Rd → Rd with unknown vector
field f : Rd → Rd, from a limited information along a single trajectory (i.e. a noisy measurement
or time series data as a realization of a random sample of size n.

S :=
{
zi = (xi, yi) = (x(ti), y(ti))|x(ti) = xi, y(ti) = dotx(ti) = yi ∈ Rd

}n

i=1
.

Now, in order to capture non-linearity in the dynamical system via a linear model framework, we
introduce an explicit feature map embedding ϕ : X ⊂ Rd → Hϕ ⊂ Rp, p = p(n, d) such that
f(x) ≈ Ω⊤ϕ(x). Mathematically, we have

f(x) =


f1(x)
f2(x)

...
fd(x)

 ≈


ω⊤
1 ϕ(x)

ω⊤
2 ϕ(x)

...
ω⊤
d ϕ(x)

 =


−ω⊤

1 −
−ω⊤

2 −
...

−ω⊤
d −

ϕ(x) = Ω⊤ϕ(x), Ω ∈ Rp×d, ϕ(x) ∈ Rp.

Now,running the model y = ẋ = f(x) ≈ Ω⊤ϕ(x) over the given data S as

yi ≈ y(ti) = ẋ(ti) = f(x(ti)) ≈ f(xi) ≈ Ω⊤ϕ(xi),→ y⊤i = ϕ⊤(xi)Ω + ϵ⊤i , i = 1, . . . , n =⇒
Y = XΩ+ Ξ,Y ∈ Rn×d, X ∈ Rn×p, Ω ∈ Rp×d, Ξ ∼ N (0,Σ) a Gaussian noise model. (1)

Towards estimating Ω, we formulate a regularized empirical risk minimization problem (ERM) on
a finite noisy observations along a single trajectory as:

Ω̂ = argmin
Ω

L̂S(Ω) + λ∥Ω∥2H, L̂S(Ω) =
1

n

n∑
i=1

∥yi − ŷi∥2

and corresponding error dynamics satisfies the following decomposition:

∥Ωt − Ω∗∥ ≤ κt∥Ω0 − Ω∗∥+
√

1

SNR

√
pdH

n

Conclusion

Non-linearity in input phase space can be captures well by a class of separable functions such as
separable functions, polynomials, linear combination of non-linear feature maps of original state
variables etc. After applying any of those class of functions, learning a sparse dynamical system is
turned into optimization problem that off-the-shelf our purposed optimization algorithms can handle
well.
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