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Abstract

The governing physics in science and engineering is often based on assumptions
and approximations, leading to analyses and designs that are also approximate.
While data-driven machine learning models have emerged to address this issue,
they often suffer from (a) lack of interpretability, (b) reliance on large datasets, and
(c) poor generalization beyond their training domain. Although operator learning
has shown promise, it still faces challenges due to its purely data-driven nature.
A suitable alternative lies in data-physics fusion, where data-driven models are
used to correct the low-fidelity physics-based models. In this context, we introduce
a novel framework, "Model operator fusion for scientific machine learning", de-
signed for solving parametric partial differential equations (PDEs). The proposed
framework integrates differentiable physics with the recently developed Wavelet
Neural Operator (WNO), combining WNO’s data-driven learning capabilities with
the interpretability and generalization of physics-based solvers. We demonstrate
the effectiveness of this approach by solving parametric PDEs through few bench-
mark examples from diverse scientific and engineering fields. The results clearly
highlight the efficacy of the proposed method.

1 INTRODUCTION

Physical systems are governed by the laws of physics, which are often expressed as Partial Differential
Equations (PDEs). The study of PDEs is well-established, with techniques such as Finite Element
Methods (FEM), Finite Difference Methods (FDM), and Finite Volume Methods (FVM) widely
accessible. However, these established physical laws are frequently derived from specific assumptions
and approximations. An alternative approach involves utilizing data-driven methods where recent
advancements in neural operators [1] have demonstrated their effectiveness in learning complex
nonlinear partial differential equations (PDEs). However, purely data-driven models have certain
limitations: (a) they often lack interpretability, (b) they require large amounts of data, and (c) they
may struggle to generalize beyond the training domain. To overcome these challenges, a potential
solution resides in data-physics fusion, where data-driven models are employed to learn the missing
physics and thus act as model correctors.

In this research work, our objective is to develop a novel hybrid framework that combines neural
operators with conventional physics-based models. The proposed framework combines the principles
of differentiable physics [2] with the recently introduced Wavelet Neural Operator (WNO) [1]. It
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utilises WNO’s capacity to learn from data while maintaining the interpretability and generalisation
of physics-based solvers. The salient features of the proposed framework are as follows:

• Physics-WNO Integration: The proposed framework introduces an innovative approach
that integrates the Wavelet Neural Operator (WNO) with a low-fidelity physics model
directly within the governing equation.

• In-Equation Augmentation: This framework emphasize on augmentation within the
governing equation itself. This in-equation augmentation enhances generalization compared
to extrusive augmentation methods.

• End-to-End Training: The approach supports end-to-end training, which ensures computa-
tional efficiency during the training phase.

• Differentiable Physics: The framework incorporates a differentiable physics solver [2]
into the WNO. This integration allows the model to be trained using the backpropagation
algorithm, eliminating the need for numerical approximations during the training process.

2 Proposed Approach

Neural operators can learn the mapping from functional parametric dependencies to the solutions
of partial differential equations (PDEs), enabling them to capture the solution operator for an entire
family of PDEs from data. However, in a scientific setting, we generally have access to both scientific
models (low fidelity) and data (sparse). Therefore, we propose a framework based on the fusion of
physics based model and data driven Neural Operators. In this work we utilize recently developed
Wavelet Neural operator (WNO) as our operator learning framework. The fundamental idea is to
integrate the WNO to the low fidelity physics model, which can be shown as:

∂u

∂t
= Gk(u,ux,uxx. . . ,pk) +W(u;θ); (1)

where, Gk represents some general operator representing the known low fidelity PDE and p represents
the parameters of the PDE. W(u;θ) represents the WNO. The hypothesis here is that WNO will act
as the physics corrector. Since we fuse the WNO with the low fidelity physics model we refer to the
proposed approach as the model operator fusion (MOF). For using MOF in practice, one needs to
train the WNO in Eq. 1. However, we don’t have access to the samples/measurements of missing
physics. Therefore we employ an end-to-end approach, which involves integration of differentiable
physics solver with WNO. A schematic representation of the framework is shown in Fig. 1.

3 Numerical Problems

In this research, we assess the performance of the proposed framework using a series of benchmark
problems with multiple cases to evaluate the framework’s effectiveness in handling various scenarios
and complexities, one of which is shown here. For illustrative purposes, a synthetic low-fidelity
physics model was created by omitting certain portions of the PDE. The solutions produced by
the proposed framework are compared with the ground truth to assess accuracy as shown in Fig
2. Particularly, we demonstrate the extrapolation and generalization capabilities of the proposed
framework. For quantitative assessment, mean squared error (MSE) values were calculated for all
benchmark examples, comparing the performance of different models relative to the ground truth, as
shown in Table 1.

3.1 One dimensional PDE

In this example, we consider the Nagumo equation, which has various applications including modeling
of wave propagation in neurons. Specifically, it is used to study the dynamics of voltage across
nerve cells and the impulses in nerve fibers. The Nagumo equation incorporating periodic boundary
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Figure 1: Schematic representation of the framewok: The two major components are the the WNO
block and the PDE solver. The WNO when additively augmented with the known PDE within the
equation form, is trained to learn the missing physics and thus acts as the physics corrector. The
augmented PDE is then solved using the numerical solver to get the corrected output. The framework
is trained by progressively unrolling in time as shown.

Method Cases Proposed WNO only Known physics
(Er) (Er) (Er)

Nagumo Missing Cubic 0.1873 35.685 1.1312
Missing Diffusion 0.0042 34.2061 0.2310

Allen Cahn Only Diffusion 0.1583 72.033 2.6089
Missing Diffusion 0.0011 28.6927 0.1046

Smoke-plume Inexact Buoyancy 0.00399 0.3605 0.3881
Table 1: The prediction errors (Er: Mean square error (MSE)) for the different examples obtained
using the proposed approach, WNO only (data-driven WNO), and known physics.

condition is expressed as follows:

∂u

∂t
− ϵ

∂2u

∂x2
= u(1− u)(u− α), x ∈ (0, 1), t ∈ (0, T )

u(x = 0, t) = u(x = 1, t), x ∈ (0, 1), t ∈ (0, T )

ux(x = 0, t) = ux(x = 1, t), x ∈ (0, 1), t ∈ (0, T )

u(x, t = 0) = u0(x), x ∈ (0, 1)

(2)

where, the parameter α ∈ R determines the wave’s speed along the axon, while ϵ > 0 controls the
diffusion rate.

3.1.1 Missing cubic term in Nagumo equation

First, we examine the scenario where only the diffusion term is present in the known physics, while
the cubic term is absent. The equation of known physics takes the following form:

∂u

∂t
− ϵ

∂2u

∂x2
= 0, x ∈ (0, 1), t ∈ (0, T ) (3)

The initial and boundary conditions remain the same as in Eq. 2.
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In this case, we have considered ϵ = 0.0001 and α = −10 to emphasize the disparity between partial
physics and complete physics. The objective is to employ the proposed approach as a surrogate to
learn the temporal evolution from the stochastic initial condition to the output.

During the testing phase, a total of 100 initial conditions were randomly selected for evaluation. The
initial conditions are of the form u0(x) = α sin(ηπx). The parameter α is sampled from the uniform
distributions U(−10, 10) (different from the training data) and the parameter η, can take values of
{2, 3, 4, 5} (same as training)

The accurate predictions in Fig. 2 demonstrate the extrapolative ability of the proposed framework,
extending to twice the training window. Additionally, since the three distinct initial conditions were
not included in the training data, this highlights the model’s strong generalization capability.
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Figure 2: Comparison of predictions from the proposed approach with the ground truth for the
Nagumo equation for the case with missing cubic term in the known equation, tested across three dif-
ferent initial conditions (three columns), with t > ttrain to demonstrate the extrapolative capabilities

3.1.2 Out-of -distribution generalization

In this section, we assess the out-of-distribution generalization of the proposed algorithm. To that end,
we considered initial conditions generated from Gaussian process with three different kernels: Radial
Basis Function (RBF), Exponential Sine Squared, and Matern. The results obtained are shown in
Fig. 3. We observe that the proposed approach easily generalizes to out-of-distribution input without
any further training. This illustrates that model operator fusion allows the model to generalize to
out-of-distribution cases. To further strengthen our claim, the mean-squared error for the three cases
are reported in Table 2, offering insights into the accuracy of the results obtained.

Exponential Sine Squared RBF Matérn
0.0220 0.0444 0.0418

Table 2: The prediction error (Mean Square Error (MSE)) using different kernels obtained using the
proposed approach. MSE is computed by taking all 100 test samples up to 150 time steps for all the
kernels.

3.2 Two dimensional PDE

In this case we consider a smoke plume simulation by solving the Navier Stokes and transport
equation along with the Boussinesq approximation

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇ · ∇u+ ηd s.t. ∇ · u = 0,

∂d

∂t
+ u · ∇d = 0

(4)

where u represents the velocity, ρ, p, ν denote density, pressure and viscosity respectively, the term
ηd represents the Boussinesq buoyancy, where d denotes the smoke marker density. The constraint
∇ · u = 0 enforces the condition of incompressibility (i.e volume preserving motion). As a test
setup we have considered an enclosed space of 150× 150 units, assuming circular smoke source with
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Figure 3: Allen-Cahn equation with missing cubic term. The comparison is shown for different
Gaussian inputs taking three different kernel functions: Radial Basis Function (RBF), Exponential
Sine Squared, and Matern (left to right). Top and bottom corresponds to two different initial conditions
corresponding to same kernel. All the predictions are shown at t = 98∆t, way beyond the training
time window of t = 50∆t

diameter ϕ = 10 units. By varying the location of smoke source horizontally from 30 to 120 units
and keeping the vertical position to be constant (= 15 units), we have generated 50 training sample
simulations with 64× 64 spacial resolution upto 50 time steps with ∆t = 1 sec. The framework is
trained upto 20 time steps. Here, the known governing equation contains a mis-specified buoyancy
factor, and the integrated WNO is designed to correct for this by learning the discrepancy between
the known equation and the actual data.

Figure 4 compare the ground truth with results from the proposed approach and the known physics
model. In both cases, the proposed framework yields results that closely align with the ground truth.
This superior performance can be attributed to the framework’s utilization of both sparse data and
approximate physics.
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Figure 4: Comparison of predicted smoke density s(x, y, t = 44∆t) obtained using the proposed
MFO, with the ground truth and known physics for Smoke plume equation. The comparison is shown
for three different initial conditions from the test samples.
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