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Abstract

Solving non-linear partial differential equations which exhibit chaotic dynamics
is an important problem with a wide-range of applications such as predicting
weather extremes and financial market risk. Fourier neural operators (FNOs) have
been shown to be efficient in solving partial differential equations (PDEs). In
this work we demonstrate simulation of dynamics in the chaotic regime of the
two-dimensional (2d) Kuramoto-Sivashinsky equation using FNOs. Particularly,
we analyze the effect of Fourier mode cutoff on the results obtained by using FNOs
vs those obtained using traditional PDE solvers. We compare the outputs using
metrics such as the 2d power spectrum and the radial power spectrum. In addition
we propose the normalised error power spectrum which measures the percentage
error in the FNO model outputs. We conclude that FNOs capture the dynamics
in the chaotic regime of the 2d K-S equation, provided the Fourier mode cutoff is
kept sufficiently high.

1 Introduction

Solving Partial Differential Equations (PDEs) is one of the most important and challenging problems
in scientific computing. PDEs are used to model a wide range of physical phenomena occurring in
scientific and industrial problems. Traditionally, PDEs arising from complex industrial problems
are solved on High-Performing Computers (HPC) based on numerical methods Press William et al.
[1992] such as Finite Difference Methods (FDM), Finite Element Method (FEM), Spectral Methods
etc. In spite of having high accuracy, these methods require significantly high computational costs and
a long time to converge to an accurate solution, prompting researchers to explore novel alternatives
that are more efficient and faster.

Interestingly, Deep Learning (DL), and particularly Deep Neural Networks (DNNs) are emerging as
a radically new approach to solve PDEs. DNNs, being a type of universal function approximator, are
well known to efficiently handle high-dimensional complexity, making them a promising tool for
PDEs Sirignano and Spiliopoulos [2018], Huang et al. [2022]. By default DNNs admit parallelization
of computations, making them easily trainable and infer-able on GPUs. Therefore solving PDEs
with them, can straight-away deployed on GPUs, without requiring much mathematical trickery as
compared to traditional solvers. Broadly, Deep Learning techniques for PDEs can be divided into
two approaches - physics based and data-driven.

1.1 Physics-Informed Neural Networks

Physics-based (commonly referred to as, Physics-Informed Neural Networks (PINNs)) approach,
involves integrating underlying physical laws described by PDEs directly into a DNNś training
process Raissi et al. [2019], Lu et al. [2021], Cuomo et al. [2022]. The key idea, is to approximate
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the solution of PDE u⃗(x⃗, t) as a DNN, and train the network with a total loss given by,

L = Ldata + LPDE + LBC + LIC (1)

where, Ldata are few sample data collected from traditional solvers, and the remaining components
are self-supervising loss terms. LPDE ensures that the DNN solution satisfies the governing equation
by using Automatic differentiation. LIC , LBC ensures that the network respects initial and boundary
conditions respectively. The pros of PINNs are that they can approximate high-dimensional PDEs,
are mesh-free and more efficient to train with limited or noisy training data. However, there are
various limitations of PINNs - they require an explicit way of incorporating the PDE and modeling
of complex initial and boundary conditions. Also, for a different initial/boundary condition, PINNs
needs to be retrained all over again!

1.2 Data-Driven Approaches

To avoid explicitly modeling the physics, recently, multiple works have emerged which solve PDEs
by a purely data-driven approach. These solvers utilize dynamical data obtained from conventional
solvers for training. They then train neural networks to model the dynamics as a transformation
between infinite-dimensional function spaces, eliminating the need for explicit physical laws. The
class of such approaches are called Neural Operators, and few examples are Deep Operator Networks
(DeepONet) Lu et al. [2019] and Fourier Neural Operators (FNO) Li et al. [2021].

DeepONet is a DNN designed to learn non-linear operators. It consists of two components : branch
net and trunk net. The branch net processes the input function at discrete spatial and temporal values
and transforms it into feature vectors. Concurrently, the trunk net takes the input spatio-temporal
coordinates , and transforms them into feature vectors of same dimensions as branch net’s feature
vectors. These two feature vectors are merged by dot-product and further processed in DNN layers
to predict the value at the inputted spatio-temporal coordinates. DeepONets are highly flexible and
versatile and perform well for different initial and boundary conditions. They are particularly effective
in reducing the generalization errors compared to PINNs. Despite their strengths, DeepONets cannot
guarantee overall physics knowledge, involve complex architecture making it difficult to train and
struggle at scaling to higher dimensional input functions.

1.3 Fourier Neural Operators (FNOs)

To overcome limitations of previously mentioned PDE solvers, Li et al. [2021] came up with a novel
approach. FNO is a class of neural operators, which learns the mapping between infinite-dimensional
function spaces as a sequence of integral operators acting directly on the Fourier space. FNOs map
the input function a(x) to a solution u(x) using a parameterized neural network Gϕ. The form of Gϕ

is given by,
Gϕ = P ◦ σ(Wn + K̂n) ◦ . . . ◦ σ(W1 + K̂1) ◦ Qa(x) (2)

here, P,Q are lifting operators to higher dimensions and Wi is local linear transformation operator
at the ith layer. K̂i, is the non-linear operator given by,

K̂ = F−1 ◦R ◦ F (3)

where F represents a non-local Fourier transformation and R is a linear transformation. σ is a non-
linear activation function which is typically used in PINNs. FNOs have proven to be exceptionally
efficient in capturing turbulent flows, physics on complex geometries Li et al. [2023a], Li et al. [2024],
weather modeling Pathak et al. [2022] and many more applications. Motivated by the success of
FNOs, in this work we undertake a numerical study of FNOs for a dynamical system which is well
known to exhibit chaos.

1.4 Chaotic dynamics and Kuramoto-Sivashinsky equation

Chaos in PDEs arises when the equations governing the system exhibit non-linearities that lead to
complex, unpredictable behavior. These non-linearities can arise from various physical phenomena,
such as fluid turbulence, nonlinear optics, and chemical reactions. When these non-linearities are
sufficiently strong, the system can exhibit chaotic behavior, characterized by extreme sensitivity to
initial conditions, irregular patterns, and the inability to predict future states with certainty. This
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chaotic behavior can make it challenging to analyze and understand the dynamics of complex systems,
as small perturbations can lead to drastically different outcomes. Despite the challenges, studying
such systems has great societal impact, particularly to predict weather extremes Blanchard et al.
[2022].

The Kuramoto-Sivashinsky (K-S) equation is a nonlinear PDE which exhibits chaos. It has appli-
cations in various fields including fluid dynamics, combustion theory, and materials science. It is
a canonical model for studying pattern formation and spatio-temporal chaos. In fluid dynamics,
it describes the evolution of thin films and interfaces, while in combustion theory, it models the
propagation of flames. In materials science, it is used to study the formation of surface patterns and
the dynamics of thin films. Additionally, the K-S equation has found applications in finance, where it
can be used to model the dynamics of asset prices and the emergence of market bubbles. Due to its
versatility and ability to capture complex nonlinear phenomena, the K-S equation remains an active
area of research in various scientific disciplines.

FNOs have been used to study the chaotic regime in the two-dimensional (2d) Kolmogrov equation
Li et al. [2023b] and one-dimensional K-S equation Lippe et al. [2023]. In this paper, we study the
2d K-S equation in a square box with Dirichlet boundary conditions,

∂tu = −1

2
|∇u|2 −∇2u−∇4u (4)

where u(x, y, t) is a scalar field. Here the dimenionality 1d vs 2d refers to spatial dimensions.

2 Methodology

In this section, we describe the details regarding generation of the data which is used for training and
testing the FNOs, as well as the model architecture.

2.1 Data generation

The training data is generated by solving the K-S equation given in equation (4) using finite difference
method for a unit spatial grid of size 128× 128 (x, y ∈ (0, 128)) with Dirichlet boundary conditions.
The PDE is evolved up-to time t = 10 with time step δt = 0.01. A dataset of 128 samples is
generated where the initial state of the scalar field u0(x, y) is populated with random values drawn
from a uniform distribution with values between 0 and 1. Data obtained thus is referred to as ground
truth in this paper.

Furthermore, on performing spectral analysis on the data generated, we observe a continuous
distribution of frequencies which suggests a lack of periodicity or a complex, non-periodic structure,
characteristic of chaotic systems (figure 4).

2.2 Fourier modes truncation in FNOs

In this sub-section we mention details regarding the architecture of the neural network used. In
addition to the initial and final fully connected layers, the neural network is made up of 4 FNO layers
between these fully connected layers. Since we analyse the effect of the Fourier mode cutoff on the
resulting model output, we compare the following two FNO models:

• FNO modes-12 with frequency modes: 12 and hidden channels: 64,

• FNO modes-24 with frequency modes: 24 and hidden channels: 64.

The difference in frequency modes in the above two models led to a difference in number of parameters
to be trained namely 4,743,937 weights for FNO modes-12 vs 18,899,713 for FNO modes-24. The
dataset of 128 samples was divided into train, validation and test datasets of 80:20:20 samples.
Further details regarding the training of the FNO models are mentioned in appendix A.2. The output
of the two FNO models is compared to the ground truth for a particular sample in the test dataset in
figure 1.
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Figure 1: A comparison of output from FNO models vs ground truth.

Figure 2: The two-dimensional log power spectrum of FNO model outputs vs ground truth.

3 Experimental Results

In order to compare the output of the FNO models with the ground truth, in this section we perform
spectral analysis. Particularly, we compare the logarithm of the 2d power spectrum and the radial
power spectrum of the prediction error between FNO outputs and ground truth.

3.1 2d Power Spectrum

The 2d power spectrum is a powerful tool for analyzing the frequency content of 2d data. It provides
a visual representation of the energy distribution in the frequency domain and helps identify dominant
patterns. In order to obtain this we first perform the 2d Fourier transform:

F (kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i2π(kxx+kyy)dxdy. (5)

The power spectrum is obtained by taking the square of the magnitude of the Fourier transform:

P (kx, ky) = |F (kx, ky)|2 = Re(kx, ky)
2 + Im(kx, ky)

2. (6)

We compare the logarithm of this power spectrum logP (kx, ky) for FNO modes-12 and modes-24
with the ground truth in figure 2. The component of the Fourier transform with zero frequency (DC
component) is at the centre of the matrix. We see that the FNO model with Fourier modes cutoff at
24 captures a lot more spectral features of the ground truth compared to the FNO model with Fourier
modes cutoff at 24.

3.2 Radial power spectrum for prediction error

The radial power spectrum provides a clear visualization of the energy distribution in the frequency
domain, focusing on the radial variation rather than the 2d grid. Thus, it is useful in analyzing patterns
and features in the frequency content of the output. The steps for computing the same are given
below:
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Figure 3: A comparison of error power spectrum (left) and normalised error power spectrum (right)
vs wavenumber for FNO modes-12 and FNO modes-24.

1. Obtain the frequency-domain representation of the output of the FNO model by performing
the 2d fast Fourier transform (FFT) given in equation (5).

2. Determine the radial wave number for each entry in the Fourier-transformed matrix, which
is the distance from the center of the matrix P (kx, ky).

3. Average the power spectrum along the radial wavenumbers. This is done by binning the
spectrum elements based on their radial wavenumber and calculating the average power
within each bin. As an example, for the 128× 128 output, we use 28 bins.

We call the results obtained by following these steps: radial power FNO (modes-12/modes-24) output
and radial power ground truth. Next, the absolute difference between these two is computed, shown
in figure 3 (left). We find that at higher wavenumber, the energy in prediction error in case of FNO
modes-24 model is lower compared to FNO modes-12 model.

While the radial power spectrum for prediction error is a useful tool used in literature Qin et al. [2024],
Lippe et al. [2023], it fails to provide a clear visualization of percentage error in the radial power
spectrum of the FNO model outputs vs ground truth. In order to take this into account, we propose
the following metric to analyze the error:

Normalised error power spectrum =

∣∣∣∣ radial power FNO output − radial power ground truth
radial power ground truth

∣∣∣∣ (7)

The plot of the normalised error power spectrum vs radial wavenumber is shown in figure 3 (right).
We find that the percentage error in the radial power spectrum remains similar at small wavenumber
for both the cases, i. e. Fourier modes cutoff 12 and 24. However, there is an exponential increase in
power for higher wavenumbers for FNO modes-12 at wavenumber bin 10 compared to at wavenumber
bin 20 for FNO modes-24. Also, the energy in the latter remains lower at the highest wavenumbers.

4 Conclusion

In this work we demonstrate that FNOs can capture the dynamics in the chaotic regime of the 2d K-S
equation, given that Fourier mode cutoff is kept sufficiently high. We compare the performance of
two FNO models where Fourier mode cutoff is kept at 12 and 24 respectively. On comparing the 2d
power spectrum, radial power spectrum of prediction error and normalised error power spectrum, we
find that the latter model, i. e. FNO modes-24 captures the chaotic dynamics of the ground truth
better upto to higher wavenumbers. This is also due to the higher number of parameters trained in
FNO modes-24 compared to FNO modes-12. However, even for FNO modes-24, the training loss
and validation loss achieved are 0.13677 and 0.29458, respectively. This suggests that the model can
get better convergence with more training data.
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4.1 Future Work

While the study has shown that FNOs can simulate the temporal dynamics of the chaotic KS equation,
it would be interesting to see if it can also capture the higher order statistical properties of chaos in
the system. More specifically, measuring the Lyapunov exponent in this system and bench-marking
against traditional solvers will provide us a better understanding of how well FNOs perform in this
setup Edson et al. [2019].

In a recent work, it has been demonstrated that FNOs can learn dynamics in quantum spin systems
Shah et al. [2024]. While the systems studied in this work are integrable, it would be interesting to
see how efficient are FNOs in learning dynamics of quantum chaotic systems Alba and Calabrese
[2019], Khetrapal and Pedersen [2024].
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A Appendix

A.1 Spectral analysis of training data

The radial power spectrum of ground truth result shows a continuous distribution of frequencies,
i. e. a broadband spectrum as seen in figure 4 (left) which implies chaotic behavior. This is because
chaotic systems tend to exhibit complex, non-periodic patterns that lack a clear, repeating structure.
Conversely, a discrete spectrum, featuring distinct, sharp peaks, suggests more regular behavior.
Such peaks correspond to periodic or quasi-periodic components, implying a predictable or cyclical
pattern.
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Figure 5: A comparison of training and validation loss of the two FNO models

A.2 Details of FNO model training

This appendix provides details regarding the training of the two FNO models mentioned in section
2.2. The hyper-parameters used in experimental study of FNOs are the following:

• Loss function: relative L2 loss
• Optimizer: Adam
• Scheduler: step learning rate

• Test loss metric: MSE

• Weight decay: 0.0001

The FNO modes-12 model was trained for 89 epochs and FNO modes-24 model was trained for 92
epochs. Due to difference in trainable parameters viz. 4,743,937 for the former vs 18,899,713 for
the latter, this led to a vast difference in training and validation loss achieved in the training of these
two model as shown in figure 5.
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