
Application of Physics Informed Neural Network for
an Unsteady Rayleigh-Bénard Flow

Sunil V. Bharadwaj
ABB Corporate Research Centre
Bengaluru, Karnataka, India.
sunil.bharadwaj@in.abb.com

Chandrika K R
ABB Corporate Research Centre
Bengaluru, Karnataka, India.
chandrika.k-r@in.abb.com

Divyasheel Sharma
ABB Corporate Research Centre
Bengaluru, Karnataka, India.
divya.sheel@in.abb.com

Subhashish Dasgupta
ABB Corporate Research Centre
Bengaluru, Karnataka, India.
subhashish.dasgupta@in.abb.com

Corresponding author: sunil.bharadwaj@in.abb.com

Abstract

Scientific machine learning, particularly in fluid dynamics, is advancing through
the adoption of promising physics-informed neural networks (PINNs). This study
demonstrates the applicability of PINNs in an unsteady flow configuration where
boundary conditions are not explicitly defined during training. In real-world appli-
cations, fluids and convective heat transfer cannot be measured with ease – resulting
in sparse data. However, PINNs overcome this lack of data by embedding domain
knowledge directly into the training process through partial differential equations
(PDEs) as additional loss terms. We apply a PINN-based model to the 2D Rayleigh-
Bénard (RB) convective flow and show its effectiveness compared to model-free
simulations, highlighting its utility in control and optimisation applications.

1 Introduction

Physics-Informed Neural Networks (PINNs) have recently gained significant attention, particularly
for applications in fluid dynamics (e.g., see Cai et al. [2021]). PINNs overcome the limitations
of using solely data-driven approaches by incorporating domain knowledge through a weighted
loss function derived from partial differential equations (PDEs) or grid-less simulations.This allows
PINNs to work effectively with sparse data, as shown by Clark Di Leoni et al. [2023], who used
PINN to reconstruct velocity fields usingonly temperature measurements.
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A significant drawback of using only data-driven models is the lack of measurable data in fluid flow
or heat transfer systems, where sparse sensors provide minimal data. Take, for example, a simple case
of forced convection in heat fins. Measurements are restricted to a few thermal sensors and much
more rarely, anemometers, which measure the speed of the flow. These point sensors offer minimal
data compared to the degrees of freedom in these flows. One may need more sophisticated methods
to learn from such sparse data. PINNs bridge this gap by embedding physical laws into the network,
allowing the generation of dense approximations from sparse data. Although computational fluid
dynamics (CFD) simulations offer accurate modeling, they are computationally expensive and not
suitable for real-time applications.

PINNs can address these limitations by learning from sparse measurements and CFD simulations,
enabling faster approximations. However, a key challenge for PINNs remains in reconstructing
boundary conditions from sparse data—an "inverse" problem. While some researchers (e.g., Jagtap
et al. [2022], Raissi et al. [2020]) have explored this, its general applicability is still debated (Chuang
and Barba [2023] and McGreivy and Hakim [2024]).

In this study, we apply PINNs to reconstruct RB flow without explicit boundary conditions and com-
pare the results with model-less neural network simulations to demonstrate the value of embedding
domain knowledge.

1.1 Methodology

PINN in essence, is a type of domain-based machine learning algorithm. Here, the "domain knowl-
edge" is provided as a set of partial differential equations (PDEs). The solution to these PDEs either
by numerical simulation or exact solutions act as an additional learning parameter for the neural
network training (Raissi et al. [2019]). The numerical simulation route is often the only viable option
in practical settings, as most real-world PDEs do not have closed-form solutions.

There are many types of neural networks including fully connected and recurrent networks. In this
study we have used fully connected networks. While alternative architectures, such as convolutional
networks, could potentially capture spatial dependencies more efficiently, fully connected networks
offer greater flexibility in handling diverse types of input data and boundary conditions, making them
a suitable choice for this type of problem.

Various software frameworks support the implementation of PINNs, including Nvidia Modulus Hen-
nigh et al. [2020] and DeepXDE Lu et al. [2021b]. We have used DeepXDE (Lu et al. [2021b])because
of its ease of use, granular control, versatility and support for solving forward and inverse PDE
problems that make it suitable for performing a proof-of-concept study.

Figure 1: The schematic of PINN depicting the layers and the loss function.

Consider a generalised unsteady PDE system represented by:

f(x, t, U, ∂xU, ∂tU..., C) = 0, x ∈ Ω, t ∈ [0, T ] (1)

coupled with initial and boundary conditions

U(x, t = 0) = g0(x)U(x, t) = g(x, t) x ∈ ∂Ω, (2)
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respectively. U is the output variable, x is the spatial coordinate and t is the time. The function f is a
combination of these variables and the derivatives of U in the domain Ω - note that ∂Ω represents the
boundary of the domain. These PDEs are solved at each points corresponding to the training data,
enabling the network to capture the underlying physics.

The architecture of the neural network with hidden layers is represented by:

N0 = (x, t)N j = σ(W jN j−1 + bj), 1 ≤ j ≤ (L− 1)NL = U = WL−1 + bL (3)

Here, W i is the weight of the ith layer of the neural network. Similarly, b is bias of each layer. N is
the neural network layers with L layers. For a detailed mechanism of this implementation of PINN,
refer to Lu et al. [2021a].

The total loss function used to train the neural network is then obtained by adding the individual
losses from data training, PDE, initial conditions and boundary conditions.

Ltotal = w1Ldata + w2LPDE + w3LIC + w4LBC (4)
where L is the loss function and wi are the respective weights. Note that IC and BC stand for initial
conditions and boundary conditions, respectively. The weights are typically determined through
empirical methods or cross-validation, ensuring that the model places appropriate emphasis on the
physical laws and data-driven aspects of the problem.

There are two methods to applying PINN for any fluid flow - one with soft boundary conditions
constraints and other with hard boundary condition constraints. Soft boundary conditions offer
greater flexibility by embedding the constraints into the loss function, while hard constraints strictly
enforce the conditions at each step of the training process. We employed the soft boundary conditions
constraint method due to its unique flexibility and to demonstrate the "inverse" capabilities of PINNs.

2 Rayleigh-Bénard flow

Rayleigh-Bénard (RB) flow is a canonical convective case where a fluid in a closed channel expe-
riences a temperature gradient. The bottom plate is heated whilst the top plate is cooled, and the
heavier, cooler fluid sinks whilst the lighter, hotter fluid rises, forming convective rolls that depend
on the channel’s aspect ratio. RB flow is important for modeling natural and industrial processes
like the ocean conveyor belt where temperature differences cause the movement of ocean water (see
Bodenschatz et al. [2000] for details ).

The equations defining the velocity in an RB flow are:
∂U

∂t
+ U.∇U = −1

ρ
∇P + µ∇2(U) + g. (5)

The continuity equation for an incompressible flow then dictates the mass-balance:
∇.U = 0 (6)

The temperature equation is given by:
∂T

∂t
+ U.∇T = α∇2T. (7)

Note that U is the velocity, ρ is the density, P is the pressure, T is the temperature and g is the
acceleration due to gravity. α is the thermal diffusivity.

Rayleigh-benard flow is typically associated with Rayleigh number:

Ra =
ρβ∆T l3g

µα
(8)

where β is the thermal expansion coefficient, l is the typical length scale, which in this case is the
gap distance between the hot and the cold plates. Flow configurations are associated with a critical
Ra number below which conduction dominates the heat transfer but above the critical Ra number,
convection dominates. The critical number for RB flow is 1708. Typically in nature the Ra number
is greater than 106, which suggests that convection dominates over conduction when involving fluid
flows.

PINNs are used to model RB flow without explicit boundary conditions losses, showing their ability
to handle complex domains where boundaries are hard to express.
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Figure 2: A comparison of temperature field as output from PINN with 7000 points, with CFD
simulation and neural network (without PDE) of the Rayleigh-Benard flow. In the left are the
CFD simulations whereas the middle panels are the PINN reconstructions and right are the Neural
Networks (without PDE). For brevity, in the figures we have chosen to not show any labels.

)

Figure 3: A comparison plot of CFD and PINN simulations for the RB flow with 4000 training points
corresponding to the temperature field. The labels and contour limits also correspond to Fig. 2.
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Figure 4: A plot of residual error between CFD and PINN simulations as a function of sparseness

2.1 Simulations

For the CFD simulations, the open-source package OpenFOAM (version 8) was used (Weller et al.
[1998]). OpenFOAM is a CFD software that allows typical simulations and is widely used in industry
and academia. In this simulation, a 2-D grid was used with temperatures of 290K at the top and 310K
at the bottom. A total of 2000 points/ time step was used for our simulations. The aspect ration of
geometry was 9:1. Periodic boundary conditions were applied in the lateral direction (Y-direction).

2.2 Results

In Fig. 2, we present the results where CFD (100 time steps, 10 seconds) and ∆T = 20K between the
top and the bottom plate is used. In comparison, the PINN was input with PDE as a loss function in
training with as few as 7000 points - these were randomly selected points across the entire simulation
consisting of 200,000 points. The PINN is able to learn the dynamics of the system as evidenced.
The L2 error for different numbers of training data is shown in Fig 4. (Note that in Fig. 4, the density
of data is defined as the ratio of training data and total data available for training). The residual
reduces as you increase the density of data and stabilises at around 0.03 (that is 3 percent of the data).
The CFD simulations show a typical RB flow where the flow exhibits convective rolls due to the
thermal instability as shown in the velocity contours. These convective rolls form the basis of RB
flow and the number of such convective rolls is a function of the aspect ratio in x and y directions.
The aspect ratio in this case was 9:1. Refer to Fig. 3 for the colour map and the respective labels.
The temperature field from CFD and PINN model suggests that PINN is able to learn to capture
the convective rolls of the Rayleigh-Benard flow effectively. The unsteady nature is captured in the
neural network model. However, it should be noted that PINN does not implicitly extrapolate the
data outside the time-domain of the flow. To extrapolate the data outside the time range of the CFD
simulation, one may need to modify the algorithm to account for it.
We also conducted experiments that kept the physics loss at none, which means the neural network
was trained without PDE. The last column of results in Fig. 2 represents the prediction from the neural
network where it was trained without PDE with 7000 samples. We also experimented by increasing
the samples from 7000 to 200000 samples. Fig. 5 represents the temperature field learned by neural
network without PDE with 200000 samples. However, we found that the neural network could not
model the physical system even with large data samples. This might be due to the fact that when
the physics loss was set to zero, the hyperparameters—originally tuned for PINN training—were
not re-optimized for non-physics-based training. A fairer comparison would require optimizing the
neural network specifically for data-driven training, which we could explore in the future work.

(a) (b)

Figure 5: Temperature Field predicted by neural network without PDE trained on 200000 samples for
at time= (a) 9 and (b) 10 seconds.
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3 Discussion

PINN is a domain-based machine learning method with applications in many physical systems. In this
study, we demonstrated that PINN can extract dense information from sparse data in fluid flows and
convective heat transfer, where the governing equations are non-linear and lack analytical solutions.
This paves way for complex applications including heat management and gas leak detection, where
traditional measurements fall short.

Using Rayleigh-Bénard flow as a test case, we validated the method by reproducing unsteady
convective rolls with soft boundary constraints, showing PINN’s potential for laminar flows even with
unknown boundary information. While this study highlights PINN’s effectiveness in heat transfer
modeling, open questions remain, particularly regarding the challenges of turbulent flow. Given the
chaotic nature of turbulence, future work could explore incorporating turbulence models into the
training loss functions to extend PINN’s real-world applicability.
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