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Abstract

Accurate long-term forecasting of phenomena that are highly dependent on mul-
tiple factors remains a significant challenge due to its multivariate nature and the
inability of the models to consider these factors. For example, long-term weather
forecasting is a challenge in various sectors such as agriculture, disaster manage-
ment, and urban planning where its dependencies on various meteorological factors
must be considered. Traditional statistical and learning methods such as ARIMA
and LSTM struggle to capture long-range dependencies, leading to limited predic-
tive accuracy over extended periods. This paper introduces a hybrid model that
integrates Convolutional Neural Networks(CNNs) with Transformer architectures
named ConTra to enhance forecast performance for long-sequence time series data.
The proposed hybrid CNN-Transformer model captures local patterns from the
feature lattice using CNN’s together with an advanced positional encoder to cap-
ture positional information for multivariate data, while the Transformer’s attention
mechanism handles long-range dependencies, effectively improving overall predic-
tive accuracy. This study tested the proposed model on the Jena Climate dataset;
the proposed model outperforms existing methods with an RMSE of 0.00799, MAE
of 0.00163, MSE of 0.01762, and an R-squared value of 0.9991, demonstrating
its potential to advance state-of-the-art weather prediction by providing reliable
long-term forecasts.

Keywords: Long sequence forecasting, CNN, Transformer architecture, Jena Climate Dataset, Time
series analysis, RMSE, MSE, MAE, R².

1 Introduction

Forecasting complex, multi-factor phenomena, especially over long sequences remains a challenge
with critical applications in weather forecasting for agriculture, urban planning, and disaster pre-
paredness. Seasonal Climate Prediction (SCP) is essential for understanding climate change impacts
Doblas-Reyes et al. [2013]. Rising global temperatures and the increased frequency of extreme
events, such as droughts and heatwaves, adds complexity and uncertainty to long-term forecasting.

Air temperature forecasting, a core aspect of SCP, involves highly complex and dependency on
multivariate data, necessitating advancements in Machine Learning (ML) and Artificial Intelligence
(AI) methods. Techniques such as Artificial Neural Networks (ANN) and Support Vector Machines
(SVM) have shown strong performance in climate data prediction Dombaycı and Gölcü [2009], Liu
et al. [2012]. Enhanced accuracy has been achieved with advanced ML models like ANN optimized
with the Levenberg–Marquardt(LM) algorithm, achieving high predictive success Kisi and Shiri
[2014]. Recent deep learning models, including those with Stacked Denoising Autoencoders (SDAE)
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Hossain et al. [2015] and Long Short-Term Memory (LSTM) networks Li et al. [2019, 2020], have
further improved temporal dependency capture in climate predictions.

Hybrid models, particularly those combining Convolutional Neural Networks (CNN) and LSTMs,
enhance accuracy by integrating feature extraction and temporal dependency management Hou
et al. [2022], Fister et al. [2023], Utku and Can [2023]. This study proposes a CNN-Transformer
hybrid model, with CNNs for local feature extraction and Transformers for long-range dependencies,
demonstrating superior performance on the Jena Climate dataset. Key metrics, including RMSE,
MAE, MSE, and R2, validate its advantages over current state-of-the-art methods.

Table 1: Comparison of various models for weather forecasting with respect to different performance
metrics.

Model MSE RMSE MAE R2 Reported by
Levenberg–Marquardt - 1.96550 - 0.98881 Dombaycı and Gölcü [2009]
Wavelet-SVM 0.0937 - - - Liu et al. [2012]
Levenberg–Marquardt - 1.53 1.27 0.995 Kisi and Shiri [2014]
SDAE - 1.38 - - Hossain et al. [2015]
SVR, MLP - - 0.7232 - Salcedo-Sanz et al. [2016]
Stacked-LSTM 1.5365 1.236 0.9056 0.9692 Li et al. [2019]
LSTM - 1.04 - 0.984 Li et al. [2020]
CNN–LSTM - 1.97 1.02 - Hou et al. [2022]
Recurrence Plot+CNN
+Binarised 0.718 - 0.696 - Fister et al. [2023]
CNN-RNN 0.035 0.189 0.126 0.987 Utku and Can [2023]

2 Materials and Methods

2.1 Data set and prepossessing

The dataset used in this research is the Jena Climate 2009–2016 Dataset [2022] dataset, which
contains a continuous data of weather measurements recorded once every 10 minutes from the
weather station at the Max Planck Institute for Biogeochemistry in Jena, Germany. The dataset
spans from 2009 to 2016 and provides an extensive array of atmospheric measurements including
temperature, pressure, humidity, wind speed, wind direction and different other measurements.
These meteorological variables are essential for studying climate dynamics and performing weather
prediction tasks, making this dataset an ideal candidate for various machine learning experiments,
particularly for time-series analysis.

Each data point represents observations recorded once every 10 minutes over a seven-year period,
resulting in a dataset of approximately 420,551 records. As per statistical distribution it was observed
that there is no significant change within 60 min, thus the values were resampled to 60 min. One
hundred twenty hours of data were tracked from the past 720 timestamps (720/6 = 120). This data
was used to predict the temperature 24 h after 720 timestamps (720/6 = 120).The time-series nature
of the data allows for the analysis of temporal trends and the development of predictive models for
climate conditions. The dataset can be accessed through the UCI Machine Learning Repository under
the Jena Climate Dataset.

Training, Validation, and Testing Data:
Following the preprocessing steps, the dataset was split into training, validation, and testing sets. The
training set consisted of 70% of the data, while the validation and testing sets comprised 20% and
10%, respectively. This resulted in 48,654 sequences for training, 7,984 sequences for validation, and
6,828 sequences for testing, with each sequence containing 120 hours. These sequences were used to
train and evaluate the model for 24 hours across the different phases.

2.2 Methodology

Long Sequence Time Series Forecasting (LSTF) requires models capable of capturing long-term
dependencies and contextual information from sequences. Conventional models, such as ARIMA,
LSTM, and LSTM-based variants, struggle to capture these dependencies effectively when sequences
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are unusually long. Additionally, these sequential modeling methods are limited in their ability to
leverage advances in parallel computing, leading to increased processing time and inefficiency.
While transformers, known for their efficiency in processing sequences, have become the
computational backbone for large language models, they face limitations when applied to LSTF tasks.
The primary challenge stems from their quadratic time complexity, which becomes problematic when
handling multivariate time sequences.

Moreover, the transformer’s positional encoding mechanism is inherently designed for uni-
variate sequences. In this architecture, positional embeddings are generated across the model’s
depth, preserving positional information while allowing for parallel processing. However, this design
presents a challenge for multivariate data, as each position in the sequence contains multiple values
representing different features. Transformers, in their existing form, are not well-equipped to handle
multivariate inputs due to this architectural constraint.

To address this limitation, proposed model leveraged the strengths of Convolutional Neural
Networks (CNNs) by transforming the multivariate 1-D data into multiple 2-D layers. Each 2-D layer
consisted of embeddings with a size equivalent to the model’s depth (512), organized in a stacked
fashion. As shown in 1, Positional information for these embeddings was stacked independently,
maintaining the same stack size. These 2-D layers were then combined with the positional embedding
stack by summing them together. The combined output was passed through convolution layers,
where information from all stacked layers was consolidated into a single layer. This processed layer
was then used as the input to the transformer’s encoder, enabling it to effectively capture multivariate
dependencies.

Figure 1: Proposed hybrid architecture encoding multiple features and corresponding positional
information using Convolutional Layers.

3 Proposed Model for Long Sequence Time Series Forecasting

3.1 Challenges with Transformer Models in LSTF

Transformer models, recognized for their efficiency in processing sequences, have become the back-
bone for large-scale language modeling. However, their application to LSTF introduces significant
challenges. One major limitation is their quadratic time complexity with respect to sequence length,
which becomes a bottleneck when handling multivariate time sequences. The multivariate nature
of time series data increases computational overhead, as each time step in the sequence contains
multiple features that must be jointly modeled.

Additionally, the positional encoding mechanism used in transformers is inherently designed for
univariate sequences. Positional encodings are added to the token embeddings in a way that preserves
order information, but this approach is less effective for multivariate time series. In such cases,
each time step consists of a vector of features, and the transformer architecture struggles to handle
the multivariate relationships and long-range dependencies effectively. This architectural limitation

3



motivates the need for alternative methods that can handle the complexity of multivariate time series
forecasting.

3.2 Hybrid CNN-Transformer Model for LSTF

To overcome these limitations, hybrid model was proposed that combines the strengths of Convo-
lutional Neural Networks (CNNs) with transformer architectures. This approach transforms the
multivariate time series data into a structured format that allows the transformer to effectively capture
both short-term and long-term dependencies. Proposed model addresses both the challenges of
computational complexity and the positional encoding mismatch in transformers.

3.3 Encoder Module

The encoder begins by receiving an input sequence of token indices, denoted as 1× 120, representing
the embedded data. Each token is mapped to a 512-dimensional embedding, creating an initial tensor
of size N × 120× 512, where N refers to the feature size. To preserve the temporal ordering of the
sequence, positional encoding is added to the token embeddings. The positional encoding has the
dimensions 512× 1, ensuring that the model can distinguish between the positions of tokens within
the sequence.

Once positional encodings are applied, the embedded sequence is passed through a series of convolu-
tional layers. The convolutional layers utilize 10×10 CNN filters, allowing the model to extract local
patterns from the input sequence across both the temporal and channel dimensions. The convolutional
layers are essential in identifying high-level features in the sequence that can later be processed by
the attention mechanism.

Following the convolutional layers, a global self-attention mechanism is applied to the feature map.
Self-attention allows the model to capture dependencies across the entire sequence by weighing the
importance of each token in relation to the others.

3.4 Decoder Module

The decoder takes as input a token-indexed sequence of size 1 × 120, which corresponds to the
expected output sequence. Like the encoder, the tokens are embedded into a 512-dimensional space,
resulting in an input tensor of size N × 120× 512. A positional encoding of size 512× 1 is added
to the embeddings to maintain temporal information throughout the sequence. The decoder begins
by applying causal attention, which ensures that at each time step, the model only attends to tokens
from previous time steps. This ensures that the predictions made at time t are conditioned solely
on the past, enforcing a causality constraint and allowing the model to generate coherent sequences.
Following causal attention, a cross-attention mechanism is applied. Cross-attention allows the decoder
to attend to the encoder’s output feature map, which contains the processed information from the
input sequence. This enables the decoder to make use of both past information and the information
derived from the input sequence. The result is a more informed generation process that considers the
entire context of the input sequence. As with the encoder, residual connections and normalization
layers are utilized to stabilize training and enhance the flow of gradients through the model.

The final step in the decoder involves selecting the token with the highest probability at each time
step, forming the output sequence. This process is iteratively applied across the sequence to generate
the final prediction.

3.5 Summary of the Architecture

The overall architecture is a combination of convolutional layers for local feature extraction and
attention mechanisms for capturing global dependencies. The encoder as shown in 2 transforms the
input sequence into a feature map that captures both local and global features. The decoder uses this
feature map, along with causal and cross-attention mechanisms, to generate the output sequence. The
model is designed to handle long-range dependencies efficiently while maintaining computational
efficiency through the use of CNNs and attention mechanisms.
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Figure 2: Overall architecture flow diagram.

4 Results

Figure 3: Results
The performance of the proposed architecture was rigorously evaluated using the Jena dataset for
24-hour forecasting. The model achieved the following metrics: Root Mean Square Error (RMSE)
= 0.00799, Mean Absolute Error (MAE) = 0.00163, Mean Squared Error (MSE) = 0.01762, and a
coefficient of determination (R2) = 0.9991.

As illustrated in Figure 3, the proposed architecture demonstrates a significant improvement over
existing methods on the Jena dataset across all metrics. These results reflect a high level of precision in
the model’s forecasts when compared against the test samples. The R2 value of 0.9991 indicates that
the model accounts for approximately 99.91% of the variability in the target variable, underscoring
the model’s robustness and excellent predictive capabilities.

5 Conclusion

This paper introduced a novel hybrid model combining Convolutional Neural Networks(CNNs) and
Transformer architectures for long-sequence time series forecasting. The proposed approach effec-
tively addresses the challenges of capturing both local and long-range dependencies in multivariate
meteorological data, a common issue faced by traditional methods such as ARIMA, LSTM, and hy-
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brid CNN-LSTM models. By leveraging CNNs for feature extraction and Transformers for capturing
long-term dependencies, proposed model demonstrated superior performance over state-of-the-art
models.

The results showed significant improvements in predictive accuracy, with the model achieving a Root
Mean Squared Error (RMSE) of 0.00799, a Mean Absolute Error (MAE) of 0.00163, and a coefficient
of determination (R2) of 0.9991. These results underscore the effectiveness of the proposed hybrid
CNN-Transformer model in handling complex, multivariate time series data, offering substantial
improvements in both short-term and long-term weather forecasting tasks.
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