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Abstract

Deterministic regression-based downscaling models for climale variables often
suffer from speciral bias, which can be mitigated by generative models like diffusion
models. To enable efficient and reliable simulation of extreme weather events, il is
crucial to achieve rapid turnaround. dynamical consistency, and accurale spalio-
temporal spectral recovery. We propose an efficient correction diffusion model,
TAUDIM, that combines a deferministic spatio-temporal model for mean field
downscaling with a smaller generative diffusion model for recovering the fine-scale
stochaslic features. We demonstrate the efficacy of this approach on downscaling
atmospheric wind velocity fields obtained from coarse GCM simulations. We
then extend TAUDAIT for compulationally efficien! kilometer-scale downscaling of
atmospheric wind velocity fields. Owing lo low inference limes, our approach can
ensure quicker simulalion of exireme events necessary for eslimaling associated
risks and economic losses.

1 Introduction

Weather extremes are on Lhe rise due (o accelerated climate change [1]. Given their polential to
severely damage life and property, il is becoming increasingly imporiant Lo estimale their frequency,
associaled risks and economic losses beforehand [2—4]. By insuring for such losses, we can become
more resilient towards exireme events [5]. Climate risk modeling often relies on historical Earth
system observations [6] or physics-based general circulation models (GCMs) [7] to generate climale
projections. Typically, GCMs operate al a coarse resolution (O 10) — O 10°)km) due lo compute
limitations. This leads Lo incorrect characterization of weather extremes. In recent years, machine-
learning based statistical downscaling approaches have been explored o obtain realistic well-resolved
climate data over specific regions [B—10]. These methods leverage historical Earth system observalion
dala to create a non-linear mapping from bias-corrected coarse GCM simulations to the desired
higher-resolution outputs.

While deterministic regression models effectively caplure large-scale features, they struggle with
fine-scale stochastic atmospheric processes due lo low-frequency spectral bias [11]. This limitalion
has recently led Lo the adoplion of generative models like GANs [10, 12, 13], and denoising diffusion
models for downscaling tasks [14, 15]. Denoising diffusion models [ 16-18] are panticularly promising
due to their stabilily in training, reliable convergence, and high output qualily. However, sampling is
often time consuming. Addressing this, Karras et al. [19] explored the design space of such diffusion
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models, and proposed the elucidated diffusion model (EDM) which successfully reduced the number
of model evaluations (from O( 107) 1o ©(10)) required to generate a single sample. Motivated by this,
a correction diffusion model (CorrDiff) [ 14] was proposed for kilometer-scale downscaling. CorrDiff
combined a UNet-based deterministic model lo map Lhe mean field and an EDM correction lo caplure
fine-scale siochastic contenl. More recently, Merizzi er al. [20] proposed an ensemble-diffusion model
for kilometre-scale downscaling 10-metre wind speeds. Moreover, with their ensemble-dilTusion
muodel, they reported an inference lime of approximately twio hours for one year worlh of data.

In the context of extreme-event simulation, il is vital that both shori- and long-term event siatistics
of downscaled data be consistent with historical observations. So, the lack of temporal model-
ing in downscaling models may affect dynamical consistency of downscaled data (e.g. distorted
propagation of storm fronts). One could address this issue by borrowing techniques from video
generation/prediction [21], as explored by Yoon et al. [22] for regional weather forecasting. However,
such lechniques have not yet been explored for downscaling. Moreover, large models as in [14] are
computalionally intensive to train and infer. This prohibits the peneration of even relatively small
(O 10%)) extreme-event datasets, which are crucial for accuralely quanlifying climate tail risk. Given
a good mean-field model, it is possible that a smaller and compulationally efficient diffusion model
would suffice. This would reduce overall computational demands, inference times, and improve
efficiency for real-time use.

To address these challenges, we propose a computationally efficient Temporal Attention Unit en-
hanced Diffusion model (TAUDI) that integrates (a) a video prediction model for dynamically
consistent mean-field downscaling, and (b) a smaller guided denoising diffusion mode] for siochasti-
cally generating the fine-scale features. We train the models on atmospheric wind fields obtained
from reanalysis dalasel. The performance of TAUDHIT is firsl compared against separate mean-field
regression and end-to-end diffusion models under a fixed training budgel. We evaluate the downscal-
ing performance of TAUDIIT on an ensemble of bias-cormrected coarse GCM oulpuls using various
spectral statistics. As a prool of concepl, we also evaluate il TAUDIIT is capable of mapping a
reanalysis datasel of £.25" (about 25km) grid resolution to another dataset at 0.0625" (about 5km)
erid resolulion. We finally discuss its potential in producing accurate and computationally efficient
extreme-evenl dalasets, and the implications of model inference imes and carbon footprinl offselting.

2 Methods

Overview We demonstrate the efficacy of TAUDIT in downscaling almospheric wind fields over
the European region through two case studies: (i) model performance validation and GCM oulpui
downscaling to 0.25% resolution, and (if) exlension of TAUDIIT to kilomeler-scale downscaling (0.25%
to (L0G257). Instead of a single lime instance inpult like in [14], our approach uses a deterministic
mean-field regression component that takes a temporal sequence of coarse wind velocity snapshots
with orography data as inpul. Here, the high-resolution wind fields from the final lime step of the
spquence serves as the targel. We then train a generative diffusion model for correcting the outputs of
the mean-model. We discoss the mean-field and diffusion model components of TAUDIT below.

TAUDiff Component 1: Mean model We adopl the Simple yet belter Video Prediction (SimVP)
architecture [23] consisting of a spalial backbone, and a translator for lemporal modelling, ensuring
temporal coherence and simplicity as compared to the more complex transformer based architec-
tures [21]. We specifically consider a UNet for the spatial backbone, and the temporal atiention unit
{TALT) [24] for the iranslator. The TAU first independently models spatial dependency via static, and
both cross-channel and lemporal dependencies using dynamical attention unils, respectively, and
then combines them. We train the mean model using a weighled combination of mean absoluie error
(MAE), mean squared error (MSE), and also 1o maintain dynamical consistency, physics-based losses
on advection (e - V), vorticity (V x w) and divergence (V - u) of wind fields (u) are considered.
Although dynamically consislenl predictions are possible with this mean model, the downscaled
fields still lack the stochastic fine scale features. This is where Component 2 comes inlo play.

TAUDif Component 2: Correction diffusion model To capture (he residual stochastic fine scale
features (which cannol be captlured by the mean model), we build a relatively small correction
diffusion model (~ (1) million (M) parameters) trained using a score-matching loss [25]. To
maintain consistency of our approach, we use a SimVP architecture as in the mean model but with
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Figure |- Schematic of the TAUDIM model

a residual dense UNel as the spatial backbone. Once the model s trained, a data sample can be
gencrated by solving a stochastic differential equation modelling a reverse diffusion process 17, 19].
Since the condilional input to the diffusion model is the mean model outpul (for a single time
instance). the TAU morphs inlo a Channel Atlention Unit (CAU) where the dynamical atlention unil
now models cross—channel dependencies and their relative importance (sce figure 1 for a detailed
schematic of TAUDIT. .

3} Results and discussion

3.1 Model validation and GCM downscaling

Experimental protocol We demonstrated the polential of our framework by comparing three
models: a delerministic mean-feld regression, an end-lo-end diffusion, and our TAUDIN model, each
with (10} M trainable parameters overall. For our training, we use the atmospheric reanalysis dataset
(ERAS) at 0.25% lal-lon resolution prodoced by the European Center for Medium-range Weather
Forecasts (ECMWEF) [6]. Instead of using coarse inlerpolalion, we use lowpass spherical wavelel
filtering [26, 27] to creaic band-limited low-resolution ERAS fields (o ensure proper scale separation.
This approach closely mirrors real-world scenarios where bias-corrected GCM data lacks fine-scale
spatio-lemporal features. The models were rained over 40 years of ERAS atmospheric wind dala
over Europe ( 1980-2020) {figure 2(a)), and validaled over 2021-23. All the models were trained on a
single T4 GPU over 50 epochs, with training limes of 24, 48, and 60 hours for the mean, end-to-end
diffusion, and the TAUDIIT models, respectively.

Validation Diffusion models can creale noisy arlifacts in the samples and they only get magnified
when ploiting the gradients of the oulputs. Hence, for a rigorous gualitative evaluation, we consider
vorticily snapshots instead of using wind speeds like in other works [20]. Qualitatively. the vorticily
contour predictions of mean and TAUDIT models demonstrate dynamical consistency of storm
fronis, whereas the end-to-end diffusion model distorts them due 1o noise injection (circled zone in
figure 2(b)). Quantitatively, pointwise statistics computed over validation years 2021-23 show good
recovery of spatial and temporal spectrum for TAUDAT, while mean model undemepresents, and
end-to-end diffusion overrepresents higher lemporal frequencies, respectively (figures 2(c) and 2(d)).

Testing The performance of our TAUDIT model was then evaluated on downscaling bias-corrected
coarse GCM oblained wind fields over 40 years. We use the Community Almosphere Model 4.0
{(CAM4) [28] (at 17 resolution) as the coarse GCM in this study. Bias correction is done by guantile-
mapping [29] the 40-year distribution of each grid cell to that of ERAS, wavelet-fillered to GCM
resolution. As earlier, we obtain physically consistent output, and remarkable spectral recovery
{figures 3(a-c)). Although only a simple quantile mapping [29] is adopted for bias correction, we see
zood agreement with ERAS ground truth in the local storm counts (see Gigure 3(d)). This cements the
need for a stochastic cormection using a diffusion model for accurate extreme-event risk estimation.
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Figure 2: (a) European region used for training the downscaling models, with select locations used for
evalualing performance. Companison of model predictions: (b) vorlicity snapshot at UTC: 2023-12-31
21:00, (c) spatial spectrum, and (d) lemporal spectra al select locations shown in (a).
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Figure 3: Asspssmenl of downscaling performance on bias corrected CAM4 data: (a) Vorticity
contours al a representative lime instance, (b) lemporal spectrum, (c) vorticity distributions, and (d)
local storm counts.

3.2 Extension to km-scale downscaling

Methodology extension Diffusion models require multiple function evaluaions while sampling [ 18,
16]. As a resull, in case of km-scale repional downscaling, ensemble methods [20], a large model
size [19], and high image resolutions can vasily increase Lhe inference times. Hence, for applications
necessitating km-scale downscaling, it would be beneficial to have TAUDIT operate at a coarser
resolution Lo reduce inference times. Since the models can be trained on reamalysis data. a single
ensemble member of the diffusion model should be representative of the field-stalistics. The generated
samples al coarser resolulion can then be downscaled wsing deterministic UNel based regression
maodel lo recover the fine-resolution data as depicted in the schematic ligure 4.
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Figure 4: Schemalic of (he km-scale downscaling pipeline.
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Fipure 5: Assessmenl of ERAS o CERRA downscaling performance: (a) Vorticity conlours at UTC:
2010-11-10 21:00, (b) spatial spectrum, and (c) lemporal spectra al select localions as shown in 2(a).

Experimental protocol As a proof of concept, we consider the example of downscaling ERAS
atmospheric wind velocity fields al 0.25" resolulion Lo the Copernicus Furopean Regional Reanalysis
(CERRA) [30] datasel resolution of 0.0625". The CERRA datasel is natively oblained on a cartesian
erid. However, in our study, we project the CERRA data onto a lal-lon grid of similar resolution.
Unlike Merrizi er al. [20]. where only a sub-region encompassing llaly and Alps was considered,
we consider the entire Furopean region for training as shown in figure 2{a). While the size of mean
model component of TAUDIT remains the same as in the earlier experiments, the comection-diffusion,
and the deterministic UNel based regression models now consist O 10)M, and O(10%) thousand
trainable parameters, respectively, This is to ensure that the finer scales are well captured by the
models. We train this TAUDIT model over 10 years (201 1-2020) of input-targel pairs of ERAS, and
0.25" interpolated CERRA over the European region (see figure 2(a)), and lested over the year 2010.
The delerministic UNet based regression mode! was independently trained over the same domain
using high resolution CERRA wind velocity fields as tarpets, and interpolated CERRA wind velocity
fields as the model inputs. Al inference, we chain TAUDINT, and the regression model together to
senerate a sample.

Testing We oblain physically consistent fields with good gualitative, and quantitative agreement
with CERRA data (see figure 5). IT one were o pass inpuls al 0.0625° resolution to the difTusion
correction model, il can take approximately 76 minutes for downscaling one year on a single NVIDIA
H100 GPU. However, since TAUDIIT is now operaling at U.25" resolution, we oblain a reasonable
inference time of approximately 4 minutes per one vear of data. In both the cases, 20 reverse diffusion
steps were considered. With frameworks like NVIDIA TensorRT, our preliminary investigations
indicate that il is also possible to further reduce the inference imes by up Lo three times the original.

4 Conclusion

Overall, our proposed video-prediction-based TAUDAT model and its km-scale downscaling exlension
demonstrates dynamically consistenl downscaling, remarkable reconstruction of spatio-lemporal fing
scale features, and viable inference times with the use of a small correction diffusion model. Since
coarse and fine scale contenl of the atmospheric fields are resolved well, accurate eslimation of storm
statistics was possible and excellent performance on spectrum and storm statislics were obtained. 11
was also demonstraled as a proof of concepl that even when TAUDIIT operated on coarser resolutions,
the ERAS-CERRA downscaling performance was remarkable. Thus, we show thal TAUDIIT has
immense potential in accurate, and compulationally efficient estimation of extreme weather evenls.
Our fujure work would involve staging of TAUDIT models to obtain multi-resolulion outpuis for
extreme weather event simulalions while maintaining reasonable inference limes.
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