
Physics Informed Neural Network Framework for Full
Order and Reduced Order External CFD Solver

Rahul Halder∗
Mathematics Area, mathLab, SISSA, via Bonomea 265, I-34136 Trieste, Italy

rhalder@sissa.it

Giovanni Stabile
The Biorobotics Institute, Sant’Anna School of Advacended Studies

V.le R. Piaggio 34, 56025, Pontedera, Pisa - Italy
giovanni.stabile@santannapisa.it

Gianlugi Rozza
Mathematics Area, mathLab, SISSA, via Bonomea 265, I-34136 Trieste, Italy

grozza@sissa.it

Abstract

This work describes the development of a physics-informed neural network (PINN)
with a physics-based loss term derived from an external Computational Fluid
Dynamics (CFD) solver such as OpenFOAM. The major difficulty in coupling
PINN with external forward solvers is the inability to access the discretized form of
the governing equation directly from the PINN. This creates a significant challenge
to conventional automatic-differentiation-based derivative computation of physics-
based loss terms with respect to the weight matrix and bias vectors in neural
networks. Therefore, we propose modifying the physics-based loss term to compute
the derivative required for the optimization machinery. Furthermore, to overcome
the problem arising from the large dimensionality, the governing equations are
cast in the linear manifold Stabile and Rozza [2018], and the resulting reduced
form of the equation is used as a residual for the physics-based loss term in the
PINN. The main objective of the current work is to couple the available numerical
data with existing forward solvers (in full-order and reduced-order forms) and
use them for several inverse and ill-posed problems. The major potential of
the current work lies in offloading the task of residual computation, boundary,
and initial condition to dedicated external forward solvers such as OpenFOAM.
The additional implementation of governing physics in the conventional PINN
framework is no longer required. We show two applications of the coupling method,
the Burgers’ equation of full order implemented in OpenFOAM and the reduced-
order incompressible viscous flow past a cylinder implemented in ITHACA-FV
Stabile and Rozza [2018] with physics-informed neural network framework.

1 Introduction

Early attempts to solve partial differential equations (PDEs) using neural networks began with the
work of Dissanayake and Phan-Thien [1994]. Recent advancements in neural network research have
revitalized this area, as seen in the work of Raissi et al. [2019]. Physics-informed neural networks
(PINNs) address the challenge of large training dataset requirements by incorporating additional
physics-based loss terms, which are derived from the governing equations. Various types of neural
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networks have been explored in the context of PINNs. Artificial neural networks (ANNs) have been
used by Raissi et al. [2019], bin Waheed et al. [2021], Tartakovsky et al. [2020], and Schiassi et al.
[2021]. Similarly, convolutional neural networks (CNNs) have been coupled with physics constraints
by Gao et al. [2021] and Fang and Zhan [2019]. An extensive review of advancements in PINNs has
been provided by Cuomo et al. [2022]. Cheng and Zhang [2021] introduced a tensor differentiator
to calculate derivatives of state variables, coupling LSTM networks with physics from governing
equations for applications in nonlinear structural problems. Typically, PINNs rely on automatic
differentiation (AD) for gradient computations Baydin et al. [2018]. However, some efforts have
utilized numerical methods such as finite difference, finite element, and finite volume techniques to
compute the physics-based loss terms. For instance, Ranade et al. [2021] proposed Discretization-net,
incorporating finite volume-based residuals into the PINN loss term. Similarly, Aulakh et al. [2022]
integrated a physics-informed ANN with finite volume discretization using the OpenFOAM solver.
Despite their benefits, PINNs often require more computation time than traditional solvers due to the
high dimensionality of the network output. To address this, conventional dimensionality reduction
techniques, such as Proper Orthogonal Decomposition (POD), can be employed to simplify the
governing equations before coupling them with the loss terms, as demonstrated by Chen et al. [2021]
and Hijazi et al. [2023]. The full potential of discretized physics-based neural networks could be
realized by coupling PINN solvers with external forward solvers, each implemented in distinct coding
environments.

The contributions of this work are summarized as follows:

• A novel approach is proposed to integrate existing forward solvers into the PINN framework.
In this work, OpenFOAM is coupled for the full-order system, and ITHACA-FV, a derivative
of OpenFOAM for reduced-order modeling Stabile and Rozza [2018], is integrated with the
PINN framework.

• An enhanced Physics-Informed Neural Network (PINN) algorithm is introduced (detailed
in Halder et al. [2023]), which includes an additional step to enable seamless integration
with external solvers. This eliminates the need to embed the discretized governing equations
directly within the computational graph of the neural network.

2 Governing Equations and Reduced Order Representations

The governing equations associated with different computational mechanics’ problems can be cast
into the general form of a nonlinear parameterized dynamical system as shown in Equation 1

∂u(t;µ)

∂t
= A(µ)u(t;µ) + F(u;µ; t)u(t;µ) + B(µ)f(µ), u(0;µ) = u0(µ), (1)

Let µ ∈ Ωµ ⊂ RNµ represent a vector containing the parameters of the dynamical system. The
time-dependent state variable is denoted by u : [0, T ] × RNµ → RN , while the initial state is
given by u0 : RNµ → RN . The function f : [0, T ] × RNµ → RNi describes the time-dependent
input variable, which is independent of the state variable. Here, N , Ni, and Nµ represent the
number of degrees of freedom of the high-fidelity solution, the dimension of the input variable,
and the parameter space, respectively. The linear component of the governing equation is defined
by the constant operator A : RNµ → RN×N , while the nonlinear component is characterized by
the operator F : RNµ → RN×N , which depends on the state variable. Additionally, the operator
B : RNµ → RNi×Ni , associated with the input variable, may also depend on the state variable
depending on the nature of the governing equation. Although any time integration method can be
used to discretize the system in time, we demonstrate the backward Euler time-discretization with an
implicit approach for illustrative purposes. For simplicity, the B matrix is assumed to be independent
of the state variable in this demonstration.

(IN −∆t(k)A(µ)−∆t(k)F (u(k);µ; t))u(k) = u(k−1) +∆t(k−1)B(µ; t)f(µ), (2)

whereas if we consider the explicit numerical discretization approach,

u(k) = u(k−1) + (∆t(k−1)A(µ) + ∆t(k−1)F (u(k−1);µ; t))u(k−1) +∆t(k−1)B(µ; t)f(µ), (3)
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where, IN denotes the identity matrix of size R(N×N), ∆t is the time step and and k denotes the kth

time instant. The following subsection will discuss the reduced-order formulation of the discretized
governing equations.

2.1 Linear subspace solution representation

The computational complexity of Equation 2 and Equation 3 is O(N). To reduce the computational
cost of solving the full-order system, the state variables can be approximated as a linear combination
of a reduced number of basis vectors Φ. The resulting reduced-order equations can then be solved
using a time-marching scheme similar to the full-order model. In section 3, we propose an alternative
approach to solving the reduced-order equations in the context of physics-informed neural networks.
The basis vectors can be derived from a set of solution vectors corresponding to different parameter
values µ as follows:

u(µ) ≈ ũ(µ) ≡ Φû(µ), (4)

where û(µ) : RNµ → Rn with n ≪ N . The basis vectors Φ ∈ RN×n are defined as:

Φ = [ϕ1 ϕ2 . . . ϕn] . (5)

To compute the basis vectors, solution snapshots u are collected at various time instants for m
parameter values [µ1, µ2, . . . , µm]. At a specific parameter µp, the snapshot vectors for Nt time
instants are organized as Up = [u(1)(µp), u

(2)(µp), . . . , u
(Nt)(µp)] ∈ RN×Nt . By concatenating

snapshots across all parameter values, the total snapshot matrix U ∈ RN×mNt is obtained as
U = [U1 U2 . . . Um].

Proper Orthogonal Decomposition (POD) Stabile and Rozza [2018] can be used to compute the
spatial basis vectors Φ. This is done by performing Singular Value Decomposition (SVD) on the
snapshot matrix U :

U = WΣV T =

l∑
i=1

σiwiv
T
i , (6)

where l = min(N,mNt) and n < mNt. Here, W ∈ RN×l and V ∈ RmNt×l are orthogonal
matrices, and Σ ∈ Rl×l is a diagonal matrix containing the singular values. The POD basis Φ is
formed by selecting the first n columns of W , minimizing the Frobenius norm ∥U − ΦΦTU∥F .

The reduced-order system of equations is derived from Equation 2 as:

(ΦT INΦ−∆t(k)ΦTA(µ)Φ−∆t(k)ΦTF(û(k);µ, t)Φ)û(k) = û(k−1) +∆t(k)ΦTB(µ; t)f(µ),
(7)

which simplifies to:

(In −∆t(k)AR(µ))û
(k) −∆t(k)ΦTF(Φû(k), µ, t)Φû(k) = û(k−1) +∆t(k)B(µ; t)f(µ), (8)

where AR = ΦTA(µ)Φ. The reduced-order system can also be derived from the explicit formulation
in Equation 3. Beyond linear projection methods like POD, nonlinear manifold-based approaches,
such as those employing convolutional autoencoders Romor et al. [2023], can also be used for
dimensionality reduction.

3 PINN for Discretized Full-Order and Reduced Order System

In this section, the discretized full-order or reduced-order governing equation is employed in the
physics-informed neural network framework. The input and output structure of a simple ANN
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network is straightforward. For an unsteady problem, [x1, x2, x3, . . . , xt] is the input associated
with different time instants and [y1, y2, y3, . . . , yt] are the output values corresponding to the inputs.
Hence, a one-to-one correspondence exists between the input and output formulations of each time
instant. In the Artificial neural network augmented discretized physics-informed neural network
(ANN-DisPINN) proposed here, an additional loss penalty is introduced alongside the data-driven
loss part, which is obtained from the discretized governing equation in the external solver as explained
in Halder et al. [2023].

4 Results

In this section, we consider coupling the unsteady 2-dimensional viscous Burgers’ equation with the
physics-informed neural network.
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(a) Data+Physics
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Figure 1: Absoute error with respect to the benchmark data when (a) both data-driven and physics-
driven loss term is considered (b) only the data-driven loss term is considered. (c) L2-error comparison
considering only data and both data and physics-based loss from the external solver.

We have considered 200 total time steps ranging from 0s to 0.2s to obtain the ground truth solution.
The total mesh size is 21 × 21. The benchmark or the ground truth solution is derived using the
finite-volume-based method with a time step size of 0.001. The objective of the current section is to
develop a neural network with time instants t as an input to the network and the solution field u as the
output. In the neural network, 4 layers with 124, 100, 80 and 64 neurons are considered respectively.
softplus activation function is considered and the learning rate is 0.006. The total number of the
epoch is 4000. Now, in the neural network platform, we consider numerical data from previously
computed snapshots of the benchmark solution for the data-driven loss term and the physics-based
loss term arising from external solver OpenFOAM at a few intermediate time-instants of the total
time considered. The obtained neural network will be utilized to predict the solution fields u at the
future time instants. We have considered 3 intermediate time-steps numerical data (at 0, 50, 100
time steps) for the data-driven loss term in the physics-informed neural network. Now, we want to
reconstruct the solution field at time instants t = 0.025, t = 0.075s and t = 0.125s and the absolute
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error of the predicted results with respect to the benchmark are shown in Figure 1. The comparison of
the predicted results with the benchmark results is carried out at t = 0.025, t = 0.075 and t = 0.125.
The physics-based residual from the external solver is exported from the external solver to the PINN
solver at every 10 time step (ranging from 0s to 0.2s) for all the spatial grid locations. Figure 1c,
show the comparison of L2-error when only data-driven loss term is considered (termed as ’with
data’) and both the physics-based and data-driven loss terms are considered (with physics). Since,
numerical data is considered between 0 to 100 time-steps, the neural network with only numerical
data demonstrates good prediction only upto the 0.1s, whereas the PINN with both data and physics
show significantly low error in the full time-span upto 0.2s.

Now we consider combining reduced-order governing physics with the physics-informed neural
network. The full-order model associated with the incompressible inviscid flow is projected using
POD-Galerkin projection to obtain a reduced-order algebraic relationship described in Stabile and
Rozza [2018]. The reduced order system is solved with a time step of 0.01. We have considered
both temporal and parametric variation for the reduced-order PINN framework. The kinematic
viscosity considered are 0.005 and 0.006. The input of the neural network comprised of time (t) and
kinematic viscosity ν as parameters. The output of the neural network consists of POD coefficients.
The residual arising from the reduced-order Ordinary Differential Equation (ODE) as described
in Stabile and Rozza [2018] at different time instants is considered as the physics-based residual
in the neural network. We have considered the numerical datasets associated with 5 time steps
such as at [0, 250, 500, 750, 1000] for the parameters 0.005 and 0.006 at all spatial locations. We
compare the predicted results with the benchmark results of the velocity profile after 1.5s. We have
considered 20 POD modes for the velocity and 10 modes for the pressure to obtain the reduced order
operators. The predicted results compare pretty well with the benchmark results when we consider
both data and physics as shown in Figure 2a and Figure 2b. However when only data is considered,
the absolute error between the benchmark and predicted results is significantly high at ν = 0.005 and
ν = 0.0055. However, when the reduced order physics is considered as physics-based residual in the
ANN-DiPINN framework as demonstrated in subsection 2.1, L2 error associated with ν = 0.005 and
ν = 0.0055 is lowered.

(a) Benchmark, ν = 0.005 at 51.5s (b) Prediction, ν = 0.005 at 51.5s
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Figure 2: Comparison of the (a) benchmark and (b) ANN-DisPINN prediction results of the reduced
order incompressible viscous flow past a cylinder at ν = 0.005 after 1.5s. (c) L2-error comparison
considering only data and both data and physics from the external solver ν = 0.005 and ν = 0.0055.
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