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Abstract

Thermal modelling is crucial in analyzing the health and the life of a battery
pack. The heat generated in the battery pack is a function of multiple parameters
including thermal conductivity of the cell, the connectors, the current passing
through the cells, the contact resistance, etc. Traditional battery pack thermal
modelling like finite element or finite volume modelling involve modelling the
heat transfer for a given set of parameters making the design process rigid as the
simulations have to be repeated for various set of parameters. We present a battery
pack modelling metododlogy that accelerates the design process using physics
informed neural networks, where all the parameters of the guven system are fed in
as inputs to the considered architecture. We show that this methodology accelerates
the simulation process by 90% comapred to the traditional methods as this aids
real-time prediction of the heat transfer characteristics for any combination of
parameters once the appropriate model is trained.

   1 Introduction

   Modeling the thermal behavior of a battery pack is essential for assessing its health and longevity. In
   electric vehicles, the battery pack is the core energy source. As current flows through the pack, ohmic
   heating occurs due to the internal resistance of the cells and the contact resistance between the cells
   and connectors. This heat raises the temperature of both the cells and the connectors. Additionally,
   the battery pack contains highly conductive thermal pads that transfer the heat generated by the cells
   to the pack’s enclosure. Heat is then dissipated through either forced or natural convection to maintain
   the battery pack’s optimal operating temperature.

   Traditional methods like finite element and finite volume analysis have been effective for modeling
   heat transfer in battery packs. However, these systems involve numerous parameters that influence
   the governing equation, such as pack current, cell thermal conductivity, internal resistance, connector
   thermal conductivity, and the convection heat transfer coefficient on the enclosure. Simulating
   different combinations of these parameters using conventional methods can be computationally
   expensive and time-consuming. Additionally, meshing a battery pack is a labor-intensive and tedious
   process, especially due to the presence of varying length scales, which significantly adds to the poor
   quality of the mesh.

   In this work, we employ Physics-Informed Neural Networks (PINNs) to model heat transfer in battery
   packs, effectively incorporating the key parameters that govern the system. Specifically, we use a
   Fourier neural network architecture to capture the high-frequency solutions of the heat diffusion
   equation for materials with properties that differ by up to two orders of magnitude. This approach
   enables efficient modeling across varying material properties.

Submitted to 1st Conference on Applied AI and Scientific Machine Learning (CASML 2024). Do not distribute.

mailto:prashant.srivastava@oorja.energy
mailto:datta.prasad@oorja.energy


2

   2 Physics-informed neural networks

  Any physical phenomenon can be described by a governing differential equation. To solve this
   equation using Physics-Informed Neural Networks (PINNs), a deep neural network is utilized, with
   spatial coordinates (and time, if the phenomenon is dynamic) represented as a point cloud serving as
   the input (Cai et al. [2021]) (Figure 1). The network’s outputs correspond to the dependent variables
   that describe the physical system. The governing differential equation is incorporated into the neural
   network’s loss function, ensuring that for a set of domain points, along with appropriate boundary or
   initial conditions, the equation is satisfied (Figure 2). Automatic differentiation facilitates efficient and
   precise computation of gradients for the dependent variables at these points, avoiding any truncation
   errors.

Figure 1: Square Domain with Interior and Boundary Points

   One of the primary benefits of using Physics-Informed Neural Networks (PINNs) to solve differential
   equations is their ability to incorporate multiple input nodes into the deep neural network. This
   allows the trained model to encompass a broader spectrum of system parameters within the design
   space. For example, when modeling fluid flow with PINNs, including an input node for fluid viscosity
   permits the training of a model that accommodates a range of viscosity values. Consequently, once
   the model is trained, it can predict flow solutions in real time for various viscosity values, significantly
   reducing the computational time needed to develop models across a wide array of system parameters.
   Therefore, PINNs facilitate faster predictions in engineering applications and eliminate the need for
   the intricate meshing process, which can be time-consuming in complex geometries.

   However, one limitation of utilizing fully connected deep neural network architectures for PINNs
   is their tendency to effectively approximate low-frequency functions, a phenomenon referred to as
   spectral bias. To address the challenges posed by complex geometries that produce sharp gradients,
   Fourier neural networks are often employed. In this architecture, the inputs are transformed into a
   higher-dimensional feature space using high-frequency functions (Rahaman et al. [2019]). In this
  work, we consider a battery pack that comprise of different domains including cels, connectors,
   thermal pads, In this work we consider a set of 64 frequencies to represent the input parameters in a
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Figure 2: A sample PINNs architecture

   higher dimension latent space. All the domains in the battery pack are represented by a feed forward
   neural network with 512 hidden units with 6 layers which are acted upon by SiLU activation function.

   Equation 1 describes the transient diffusion equation that governs the pack temperature in different
   materials:

∂T
∂ t

=D Δ2T + I 2 R (1)

  where:

• T : Temperature (dependent variable).
• t: Time.
• D : Thermal diffusivity (a constant).
• ∇2T : Laplacian operator applied to the temperature, representing spatial diffusion.
• I: Current.
• R: Cell internal resistance (for the cell domain)

   The problem under consideration is a transient heat transfer problem (Equation 1) where we analyze
   the evolution of pack temperature over a time period of 1000 seconds. To train the neural networks
   over this duration of time, we employ the approach of training models in different time windows each
   of size 500 seconds. This is a standard approach to tackle transient simulations using PINNs (Wight
   and Zhao [2020]). To implement this, we used the NVIDIA modulus sym (Modulus Contributors
   [2023]) package that enables implementation of PINNs using Fourier neural networks across multiple
   domains. This also provides custom functions for efficient application of temperature and flux
   continuity condition across all the interfaces. We implemented custom governing equations in the
   package to include multiple parameters to the training model. An illustration of the list of some
   parameters that we considerd for this work is shown in Figure 3.

   3 Results and conclusion

   Figure 4 shows the solution of the transient diffusion equation solved in the battery pack using
   Fourier neural networks. We were able to capture the variation in pack temperature at different
   time instances and for different combinations of system parameters such as current through the

∂
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Figure 3: System parameters with minimum and maximum values in the training model

   pack, internal resistance of the cells and thermal conductivity of the connectors etc. This method as
   explained greatly eases the design process of the battery packs by reducing the problem to training a
   single model for different system parameters. Since the model needs point cloud data as the input,
   the time for meshing the geometry is greatly reduced. The training process required 1e5 iterations
   per window to reach a loss error of approximately 1e-6.

  Although this method looks promising on multiple accounts, some of the challenges solving these
   problems include, convergence of the training model across all the domain geometries. Although
   Fourier nets capture sharp gradients well, a well defined scaling process for the inputs and the loss
   function is yet to be understood. A well defined scaling process makes the coefficients of the gradients
   in the loss function consistent that eventually accelerates the convergence.

Figure 4: Variation of temperature inside the pack solved using PINNs with Fourier neural nets
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