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Abstract

A machine learning surrogate model was developed to predict syngas and tar
species along the reactor length in biomass gasification. Using a GRU-based
Recurrent Neural Network (RNN), the model reduced computation time from 3696
CPU hours to just a few seconds, achieving a 10 orders of magnitude improvement
in efficiency compared to traditional CFD simulations, while maintaining high
accuracy. This approach enables faster and more cost-effective predictions for high
temperature biomass pyrolysis process.

1 Introduction

Thermochemical processes like pyrolysis and gasification hold great potential for converting biomass
into valuable chemicals and fuels. Gasification transforms lignocellulosic materials into syngas
(mainly CO and H2) and tar under controlled oxidizing conditions, with syngas serving as a precursor
for producing liquid fuels via the Fischer-Tropsch process. A significant challenge in gasification is
controlling the yield and composition of tar, a complex mixture of aromatic hydrocarbons that disrupts
the process and demands extensive cleanup. Experimental investigations are often limited by harsh
reactor conditions and the intricate coupling of hydrodynamics with reaction chemistry. Traditionally,
Computational Fluid Dynamics (CFD) simulations have been used to study these reactors, but their
high computational cost restricts the use of detailed chemical kinetic models crucial for predicting tar
composition. This work proposes a surrogate model based on a Recurrent Neural Network (RNN) to
replicate CFD predictions, utilizing detailed chemistry for secondary gas-phase reactions responsible
for syngas and tar formation, while significantly reducing computational demand.

2 Methods

CFD-DEM simulations are performed to model biomass gasification in a lab-scale fluidized bed
reactor Xue et al. [2012]. Devolatilization of biomass particles is modeled using a spatially- resolved
1D intraparticle model Goyal and Pepiot [2018] incorporating a lumped devolatilization chemistry
model Corbetta et al. [2014]. Biomass feedstock and reactor conditions are varied to generate an
extensive database of biomass devolatilization products. A compact kinetic model for the secondary
gas phase reaction Goyal and Pepiot [2017] is used with ideal reactor models - Continuous Stirred
Tank Reactor (CSTR) for the multiphase region and Plug Flow Reactor (PFR) for the freeboard
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Figure 1: Comparison between the selected product species mass fractions obtained from the CFD-
DEM simulations (solid red lines), ML-CSTR and ML-PFR in series (dash-dotted purple lines), and
ML-PFR (green symbols).

region. The data sets for both models include mass fractions of 27 product species spanning different
residence times. The resulting data set comprises approximately 165 million data points. Gated
recurrent units based Recurrent Neural Network models (GRU-RNN) Sharma et al. [2022] are built
for the ideal reactor models. The input to the ML models consist of mass fractions of the primary
product species obtained through the biomass devolatilization model. The two ML models are used
in series and their predictions are compared CFD-DEM simulations.

3 Results and discussion

Figure 1 shows the cross-sectional and time-averaged CFD-DEM predictions (solid red line) of CO,
H2, and single-ring aromatics mass fractions along the reactor length at 800 C. A significant variation
in the species mass fraction is observed in the multiphase region (0 to 0.06 m) with a sharp peak near
the injection location of biomass. These results demonstrate improper mixing in the multiphase region
and inadequacy of the CSTR assumption commonly used in the literature. The CFD-DEM results are
compared with the developed ML models: 1) ML-CSTR and ML-PFR in series (dash-dotted purple
lines) and 2) ML-PFR for the entire reactor (green symbols). Both the models can adequately capture
the overall trend, including the outlet species mass fractions. However, the comparison within the
multiphase region is semi-quantitative. Interestingly, Model 1 predictions are in better agreement
with the CFD-DEM despite improper mixing in the bed region. The input of both the ML models is
the composition of biomass devolatilization products, whereas in CFD simulations biomass particles
release primary products within the multiphase region. Overall, the developed ML model enabled
a significant reduction in computational cost compared to CFD, reducing computation time from
3696 CPU hours to just a few seconds, achieving a 10 orders of magnitude improvement. Similar
observations were made at higher reactor temperatures of 900°C and 1000°C.

4 Conclusions

We perform CFD-DEM simulations of biomass gasification in a lab-scale fluidized bed reactor
utilizing a 1D intraparticle biomass devolatilization model and a compact kinetics model for the
secondary gas-phase reactions. To reduce the computational cost of these CFD simulations, Recurrent
Neural Network based surrogate models are developed that are based on CSTR and PFR assumptions
and uses the same particle-scale model and chemistry as used in the CFD simulations. The developed
ML model adequately replicates the evolution of syngas and tar species along the reactor length as
predicted by computationally expensive CFD simulations
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