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Abstract

This presentation will explore a data assimilation method using an advanced particle
filtering framework that combines tempering, jittering, and global nudging. The
entire filtering process is executed with the power of ensemble parallelism, ensuring
efficient and scalable computations. We conduct extensive numerical experiments
to examine the impact of different filtering procedures on the performance of the
data assimilation process. Our analysis focuses on how observational data and the
data assimilation step influence the stability of the obtained results.

1 Introduction

Data Assimilation (DA) is a process of estimating the state of a dynamical system by combining
observation data with prior information on the state (often from a numerical model forecast). This
technique is used to combine observational data with numerical models to increase forecast and
simulation accuracy in a variety of fields, including meteorology, oceanography, and environmental
research Asch et al. [2016], Van Leeuwen et al. [2019]. In the context of the filtering problem, data
assimilation for stochastic systems can be rigorously stated as stochastic filtering. The computation
of the signal’s law given a sequence of collected observations is the crux of the nonlinear filtering
problem. See Bain and Crisan [2009] and its references for further information on stochastic filtering.

In high dimensions, particle filtering usually needs to be adapted to overcome the dimensionality
curse, which otherwise results in a loss of particle variety. In this work, we carry on the recent
trend of combining approaches to prevent this loss of diversity by jittering, tempering, and nudging.
This work explores the possibilities of global nudging the particle filter. Identical twin experiments
with a stochastic incompressible Euler flow are used to illustrate the effect on the entire solution.
Our experiments also show the emerging capabilities of our parallel library, based on the Firedrake
automated code generation system, for particle filtering with SPDEs.

2 Model and numerics

Consider the stochastic incompressible Euler flow in Ω = (0, 1)2:

dq + (u⃗dt) · ∇q + dU = (Q− rq)dt
∆ψ = q, ψ = 0 on ∂Ω
u⃗ = ∇⊥ψ

(1)

with zero boundary conditions and source term Q = 0.5 sin(8πx). The additive noise dU satisfies

(1−∇2)kdU = ηdW,

where dW (x, t) is a space-time white noise.
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2.1 Numerical Scheme

Mixed FEM (Wh = Qh × Vh) for spatial discretization

Qh = {ph ∈W 1(Ω)|ph ∈ C(Ω), ph|K ∈ P1(K)},
Vh = {ϕh ∈ H1(Ω)|ϕh = 0 on ∂Ω}.

The DG method for the hyperbolic vorticity equation

(qt, ph)− (u⃗q,∇ph) + (u⃗ · n̂q, ph)∂K = (Q− rq, ph).

and for the elliptic equation of the stream function

(∇ψ,∇ϕh) = (q, ϕh).

We have used the implicit midpoint scheme for the time discretization, i.e., qt ≈ qn+1/2 ≡ (qn +
qn+1)/2. Therefore, the fully discrete scheme is expressed as follows:

(qn+1 − qn, ph) + ∆t(rqn+1 −Q, ph)−∆t(qn+1/2∇⊥ψh,∇ph)

+∆t
(
(u⃗ · n̂)+qn+1/2,+ − (u⃗ · n̂)−qn+1/2,−, [[ph]]

)
+ (∇ψn+1,∇ϕh) + (qn+1, ϕh)

+∆t
√
∆t(dU, ph) = 0

3 Data assimilation methods

In this section, we will offer the basic foundation of stochastic filtering. LetX and Y be two processes
defined on the probability space (Ω,F ,P). The process X is usually called the signal process or
the “truth”, with range in a specified function space V in the SPDE case (approximated by a finite
element space in this work) and Y is the observation process, with range RM . The nonlinear filtering
problem: find the best approximation of the posterior distribution of the signal Xt, denoted by πt
given the observations Y1, Y2, . . . , Yt. In our context, the observations consist of noisy measurements
of the true state recorded at discrete times and they are taken at discrete locations.

In this work, we discuss the approximation of the posterior distribution of the signal by particle filters.
These sequential Monte Carlo methods generate approximations of the posterior distribution using
sets of particles, which represent samples from the conditional distribution of X . Particle filters
are employed to make inferences about the signal process. This involves utilizing Bayes’ theorem,
considering the time-evolution induced by the signal Xt, and taking into account the observation
process Yt. The observation data Yt consists of noisy measurements of the the stream function ψ
taken at a point belonging to the data grid Gd,

Yt := Ps
d(Xt) + Vt, (2)

where Vt ∼ N (0, Iσ). While we assumed standard normal distributions for Vt, the methodology
presented is valid for any observation likelihood with a computable pdf. The ensemble of particles
evolved between assimilation times according to the law of the signal.

3.1 Particle Filters: Basic terminology

In this subsection, we briefly discuss the basics of particle filters, so that we can present our results
in context. We mostly describe the methodology; more details on why it works can be found in the
references Pons Llopis et al. [2018], Cotter et al. [2020b,a]. We briefly state the various particle filters
used in this work:

• Bootstrap Particle Filter (Sampling importance resampling):
– Given an initial distribution of particles, each particle is propagated forward according

to SPDEs.
– Based on partial observations, weights of new particles and ESS are computed
– if the ESS drops below the critical value M∗, the particles are resampled.

• Tempering:
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– To artificially flatten the weights by rescaling the likelihood function by a factor
θ ∈ (0, 1]. This gives a much more diverse ensemble as the ESS will have more
reasonable values

• Jittering (Metropolis-Hastings MCMC):
– To improve the diversity of the ensemble by computing new particles that have been

duplicated during resampling.

3.2 Gloabl nudging

In the nudging particle filter framework, a time-dependent control variable directs particles toward
observation-informed regions, while maintaining consistency with the prior distribution through
adjusted weights.

Mathematical description: Consider an SDE of the form

dx = f(x)dt+G(x)dW, x(0) = x0.

The perturbed SDE:

dx̂ = f(x̂)dt+G(x̂)(λ(t)dt+ dW ), x̂(0) = x0.

In the discrete-time setting, to account for the perturbation, the particles will have new weights
according to Girsanov’s theorem, given by

wi = exp(−Φi), Φi = ∥y − h(xNi )∥2Σ +

N∑
n=1

(
∆t

2
(λni +∆λi)

2 − (λni +∆λi)∆W
n
i

)
,

(simplified to the case where all data is measured at time T ). Here h is the observation operator and
∥ · ∥Σ is the appropriately weighted norm using the observation error covariance Σ.

Globally nudging algorithm:

1. Set ∆Wn
i = 0, λni = 0 for n = 1, . . . , N , i = 1, . . . ,M .

2. Set n = 1

3. Set ∆Wn
i ∼ N (0,∆t) random variable, independently for each i = 1, . . . ,M .

4. Find (∆λ1,∆λ2, . . . ,∆λM ) that jointly minimise

σ

M∑
i=1

Φi − log


(∑M

i=1 wi

)2

∑M
i=1 w

2
i

 , wi = exp(−Φi),

5. For n ≤ m ≤ N and 1 ≤ i ≤M , replace λmi 7→ λmi +∆λi

6. if n < N , replace n 7→ n+ 1 and return to step 3.

The first term of the functional drives the ensemble towards the data and the second term stops the
nearest particles from getting too close. In general, these optimisation problems are nonlinear since
the observations at τn depend on the entire history of dW from t = τn−1 to τn through the nonlinear
SDE. This algorithm is a significant update from Cotter et al. [2024], where each Φi was optimized
separately for each time step in every assimilation window. The optimization problem is solved by
utilizing PETSc’s TAO optimization algorithm (Unconstrained Minimization) and particularly the
Limited-Memory Variable-Metric Method (LMVM) is implemented. In our implementation, this is
automated using Firedrake et al. [2023]. After the nudging step, tempering and jittering may still be
needed, requiring the θk-adjusted weight formulas to replace W with W̃ , as in Cotter et al. [2020a].

3.2.1 Ensemble parallelism

Our Firedrake implementation merges spatial domain decomposition with ensemble parallelism. The
algorithms allow independent calculations for each particle, except when states and noise increments
are copied during resampling. Weight normalization requires minimal inter-particle communication.
Ensemble parallelism divides particles into batches for independent calculations, followed by updates
from copies across batches.
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4 Numerical experiment

Numerical setup: The domain Ω = (0, 1)2 is discretized with cells 32× 32, i.e., 33× 33 points. The
stream function is observed on observation points Nx = 81. The assimilation steps {τk}50k=1 with
∆τk = 5∆t and time steps ∆t = 0.025. All observation processes are perturbed with iid N (0, 0.005)
measurement errors. The total number of particles is 60. The initial condition for the vorticity is

qspin = sin(8πx)sin(8πy) + 0.4 cos(6πx) cos(6πy) + 0.3 cos(10πx) cos((4πy)
+0.02 sin(2πx) + 0.02 sin(2πy),

from which we spin up the system until an energy equilibrium state seems to have been reached.
This equilibrium state, denoted by qinitial, is then chosen as the initial condition for our numerical
experiments. The system reaches an approximate energy equilibrium state after 250-time units, also
confirmed by Fig 1. The system reaches an approximate energy equilibrium state after 250-time units,

(a) Initial configuration qspin (b) Plot of Energy time series

Figure 1: Plot of the chosen initial configuration and energy equilibrium at tinitial = 250.

and the solution at this equilibrium point is set to be the initial condition qinitial from which we start
our numerical experiments. The vorticity and the stream function at the initial time tinitial = 250 is
plotted in Fig. 2. We use the initial condition to obtain an ensemble which contains particles that are

Figure 2: Plot of the numerical PDE solution at the initial time tinitial = 250.

reasonably close to the truth. For the validation of various filtering procedures, we use the ensemble
mean l2-norm relative error (EMRE), which is defined as follows,

EMRE(ua, up) :=
1

Np

Np∑
n=1

∥ua − upn∥2
∥ua∥2

,
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(a) Tempering steps of nudging vs without nudging
filters

(b) Evolution of the EMRE of nudging vs without
nudging filter

Figure 3: Comparison of nudging vs without nudging particle filter

From Fig. 3, we observe that the particle filter is dealing well with this filtering problem. Also, we
can confirm that the proposed global nudging filter is performing better in every perspective than the
traditional filters.
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