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Abstract

Nonlinear evolution equations (NLEEs) model complex physical and biological
systems. This study focuses on the application of the Physics-informed neural
network (PINN), a robust computational tool, for solving various NLEES, including
the Kadomtsev–Petviashvili (KP) equation along with its variants, such as the
Jimbo-Miwa equation and others. We presented a detailed study on integrating
PINN to solve such NLEEs and enhance the solution’s accuracy and computational
efficiency. Through various examples from NLEEs, we demonstrate the efficiency
of PINN to capture the complex dynamics of such problems and the advantages
over traditional numerical methods. The results highlight the advantages of the
PINN and provide insights into the broader implications of utilizing the machine
learning framework for such complex nonlinear problems.

1 Introduction

Nonlinear partial differential equations are an essential class helpful in modeling complex physical
behaviors in a system where linear models are less accurate to consider. They describe the nonlinear
interactions of the system, leading to unexpected behavior in the system. These equations are
models of various phonemes in fluid dynamics, nonlinear optics, plasma physics, etc. The famous
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Korteweg–de Vries (KdV) equation models shallow water wave propagation, and the modified
KdV (mKdV) equation addresses nonlinear wave propagation in polarity symmetry systems. The
Kadomtsev–Petviashvili (KP) equation, modified KP (mKP), and potential KP (pKP) equations
describe wave propagation in weakly dispersive systems, solitary waves in multi-temperature electron
plasma, wave interactions in multidimensional systems with potential term respectively. The nonlinear
Schrödinger equation pertains to optical solitons in optical fibers, the Burgers equation characterizes
shock waves and acoustic transmission, and the sine-Gordon equation covers fluxon propagation in
Josephson junctions between superconductors. The soliton interaction of some of these equations,
such as KdV and mKdV, is elastic, where shapes and velocities are not changed after the interaction
[32]. However, the soliton interaction of the Burgers equation is an inelastic interaction where fission
and fusion may occur.

The study of analytical solutions helps us to clarify the physical properties and behavior of nonlinear
equations, which are structural models for many physical phenomena [27]. There are several
theoretical approaches to solving analytical solutions, such as the Bäcklund transform [31], inverse
scattering method [4], tanh-coth method [2], extended tanh- function method[10], Riemann–Hilbert
method [1], Lie group analysis [24], Darboux transformation method [33], the Painlevé analysis [3],
the generalized symmetry method [8], Hirota bilinear method [12] and other soliton wave type[26].
Numerical approaches, including Adomian decomposition, homotopy analysis, differential transform
methods, finite difference schemes, and many others, offer alternative strategies for solving complex
nonlinear equations [29, 7].

Apart from these traditional approaches to solving PDEs, the neural network methods are also
successfully applied to solve different PDEs [9, 21, 25]. Among the neural network methods, the
physics-informed neural network [25] has been widely applied to solve and learn the PDE models
[6, 16]. Even though the PINN shows promising applicability to wide range of problems, the vanilla
PINN shows some failure while solving some PDEs, such as high-dimensional, non-linear, multi-scale
[30], which leads to the introduction of different versions of PINN such as C-PINN[15], XPINN [14],
hp-VPINN [18], and many others.

This work considers the Kadomtsev–Petviashvili (KP) equation and its variants to analyze PINN’s
applicability and failures while solving such problems using PINN. To discuss further, consider KdV
equation derived about a century ago by Korteweg and de Vries [19] derived an equation equivalent
to

ut + αuux + uxxx = 0, (1)

where α is a dispersion coefficient that characterizes the nonlinear interactions within the system.
The KdV equation’s significance extends to its role in various physical contexts, from ion-acoustic
waves in plasma to surface wave propagation. Later, variants of KdV equations are introduced to
model different phenomena, and significant strides are made in deriving new solutions and exploring
the interactions of solitons.

Through this study, we seek to enhance the understanding of the equation and study the applicability
of PINN to solve such equations. Our findings aim to advance theoretical knowledge and offer
practical implications for various scientific and engineering disciplines. In this work, we explore the
PINN to solve KP equations, its variants, and possible failures while solving such problems. PINN
produces smooth solutions, but we can observe sharp changes in many cases of KP solutions. We
modify the PINN to capture such sharp changes and adaptively choose the training data to train such
models. In Section 2, we discuss the methodology adopted for solving nonlinear partial differential
equations (PDEs), outlining the key steps and techniques involved in implementing Physics-Informed
Neural Networks (PINNs) for this class of problems. The detailed results, including the performance
of the PINN in various test cases and comparisons with traditional numerical schemes, are presented
and analyzed in Section 3.

2 Methodology

In mathematical physics, the Kadomtsev–Petviashvili (KP) equation, named after Boris B. Kadomtsev
and Vladimir I. Petviashvili, describes nonlinear wave motion [17], which is a two-dimensional
generalization of the one-dimensional Korteweg–de Vries (KdV) equation. It studies the dispersive
wave stability of the KdV equation in weak transversal perturbations. The KP equation is usually
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Figure 1: Architecture of the PINN

written as
(ut + 6uux + uxxx)x − σuyy = 0, onΩ (2)

which is classified as the KPI equation when σ = 1 and the KPII equation when σ = −1. Later,
different extensions of the KP equations were studied in the literature, and solutions were found using
different methods [5, 23, 20, 11, 31, 26, 28, 13]. In this study, we aimed to study such equations
using PINN. Neural network solutions are promising tools and applications for various problems,
making them a promising area of research. In recent years, the advent of machine learning (ML) and
deep learning (DL) has opened new avenues for solving PDEs, particularly with the development
of Physics-Informed Neural Networks (PINNs). PINN is a promising tool for solving PDEs using
information about PDEs and available data. PINNs leverage the power of neural networks (NNs) to
approximate solutions to PDEs by directly embedding the governing physical laws into the NN’s
architecture. This integration allows PINNs to solve PDEs more flexibly and efficiently, particularly
in scenarios where traditional methods face limitations. At the heart of a PINN is a neural network
that approximates the solution of a PDE. The network takes spatial and temporal coordinates as
inputs and outputs the predicted value of the solution at those coordinates. Unlike traditional neural
networks, which are trained purely on data, PINNs incorporate the underlying physics by embedding
the PDEs into the training process. This is done by adding a term to the loss function that penalizes
deviations from the governing equations. The general architecture of the PINN is given in Figure 1.

The loss function in PINNs typically consists of three main components: data-driven loss, physics-
informed loss, and boundary and initial conditions loss as given in Equation 3. Data-driven loss
minimizes the difference between the NN output and available training data. This is analogous to
the loss function in traditional supervised learning. The physics-informed loss term ensures that
the network’s output satisfies the PDE. It is computed by substituting the network output into the
PDE and penalizing residual error. The boundary and initial loss component enforces the boundary
and initial conditions of the PDE, ensuring the solution is physically meaningful across the entire
domain. The neural network’s architecture in PINNs is typically a fully connected feedforward
network. The choice of architecture, including the number of layers and neurons per layer, is crucial
for the network’s ability to capture the solution’s complexity. The activation functions used in the
network also play a significant role in determining the smoothness and accuracy of the solution.
The training process involves optimizing the network parameters using gradient-based optimization
methods such as Adam or L-BFGS. A critical advantage of PINNs is automatic differentiation, which
allows for the efficient computation of derivatives needed to evaluate the physics-informed loss. For
the KP equation, the loss function is defined as for the PINN output uθ is given by

L(θ, uθ) = ∥RPDE [u
θ]∥Ω + λ∥RIBC [u

θ]∥∂Ω (3)

RPDE [u
θ] = (uθt + 6uθuθx + uθxxx)x − σuθyy, (4)

where θ is the network parameters, weights, and biases. Then, the PINN algorithm will find a θ∗, the
network parameters such that the loss is minimum on these parameters.
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One of the significant challenges in solving the KP equation, particularly the KP-I equation, is
handling the nonlinear and dispersive terms, which can lead to steep gradients and soliton interactions.
PINNs address this by adaptively refining the collocation points—points in the domain where the
network is trained to satisfy the PDE—based on the complexity of the solution.

3 Numerical Results and Discussion

One of the significant challenges in solving PDEs using PINNs is dealing with high-dimensional
spaces, where traditional methods face the curse of dimensionality. PINNs address this by adaptively
refining the sample points in the domain. The effectiveness of the PINN framework is tested on
KPI, KPII, and its variant equations. For KPI, known for its challenging dispersive behavior, PINNs
are shown to accurately capture soliton interactions and wave dispersion. We will develop a PINN
framework tailored to solving the KP equation, analyze its performance compared to the exact
solution available, and discuss the advantages and challenges of this approach. Metrics such as
accuracy, computational cost, and convergence rates are evaluated.

As a test case, we consider the KPI equations with the exact solution given by

u(x, y, t) =
−48(21t2 − 48xt− 78yt+ 12x2 + 12xy − 24y2 − 16

(75t2 − 48xt+ 30yt+ 12x2 + 12xy + 30y2 + 16)2

and impose the corresponding initial and boundary conditions. The computational domain is consider
as [−10, 10]× [−10, 10]× [0, 1]. A neural network with 5 hidden layers, each containing 60 neurons,
approximates the solution. The training process involves 20000 iterations of the ADAM optimizer
followed by 50000 iterations of LBFGS optimization, using 100× 100 100×100 data points from
the domain and 200 data points for the initial and boundary conditions. After the PINN training, the
obtained solution is illustrated in Figure 2, demonstrating the PINN’s capability to accurately solve
this nonlinear PDE.

We consider the Jimbo-Miwa equation [22] as the second equation in the well-known Kadomtsev-
Petviashvili (KP) hierarchy of integrable systems. This equation is particularly significant in nonlinear
wave propagation, as it describes certain interesting (3+1)-dimensional waves in physics. Despite
its prominent role in modeling wave phenomena, the Jimbo-Miwa equation does not pass many
conventional integrability tests, complicating its analytical study. Unlike traditional integrable
systems, which are solvable through inverse scattering or the Hirota bilinear method, the Jimbo-Miwa
equation presents challenges that prevent it from conforming to these classical frameworks. The
equation is given by

uxxxy + 3uxyux + 3uyuxx + 2uyt − 3uxz = 0. (5)
These equations model nonlinear wave propagation in multidimensional spaces and Describes physical
phenomena such as shallow water waves, plasma waves, and multidimensional soliton interactions.
Consider the exact solution given by

u(x, y, z, t) = α(z, t) + 2
τx
τ
, (6)

where,

τ = 1 + eax+f(y,z)+g(t) + ebx+p(y,z)+q(t) + l(x)e(a+b)x+f(y,z)+p(y,z)+g(t)+q(t),

f(y, z) = ϕ(z +
6by

4c− b3 + 3a2b
), g(t) =

a(a2b− b3 + 4c)t

4b
,

p(y, z) = ψ(z +
3by

2c+ b3
), q(t) = ct, l(z) =

(a− b)2

(a+ b)2
,

a = 2, b = −3, c = −1, α(z, t) = 0,

ϕ(X) = 9 arctanX + 50, ψ(X) = −18 sin(
3X

4
+ 50).

The computational domain is considered as [−50, 60]× [−40, 40]× [0, 1]× [0, 1]. Figure 3 shows this
equation’s PINN solution and the error plot. The comparison plot highlights the efficiency of the PINN
approach, demonstrating its ability to approximate the solution effectively within the given domain.
The error plot, representing the difference between the exact and the PINN solutions, underscores
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areas where the model struggles, especially in regions with sharp gradients or complex nonlinear
behavior. This discrepancy emphasizes the challenges of using PINNs for highly nonlinear equations,
where the model’s efficiency can be limited by the network’s architecture and the complexity of
the equation itself. The need to mitigate such errors is critical for improving the accuracy and
performance of the model.
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Figure 2: Comparison of the exact and PINN solutions for the KP equation and the error distribution.
(a) Comparison plot at different y values of the PINN and Exact solution, (b) Error plot.
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Figure 3: Comparison of the exact and PINN solutions for the (3 + 1) Jimbo-Miwa equation and the
error distribution. (a) Comparison plot at different y values of the PINN and Exact solution, (b) Error
plot .

4 Conclusion

This study demonstrates that PINNs can effectively solve the Kadomtsev–Petviashvili and its variant
equations, capturing complex wave phenomena with high accuracy and stability. Applying Physics-
Informed Neural Networks to the KP equation represents a promising new approach to solving such
PDEs. PINNs provide a flexible, scalable, and efficient alternative to traditional numerical methods,
particularly for high-dimensional problems or those with complex boundary conditions, by embedding
the physical laws directly into the neural network framework. While challenges remain, particularly
in optimization and computational cost, the potential of PINNs is vast, with ongoing research likely
to expand their applicability and effectiveness across a range of scientific and engineering domains.
For complex boundary conditions, such as those encountered in real-world applications where the
domain may have irregular shapes, the PINN framework can be extended by incorporating domain
decomposition techniques or using level-set methods to represent the boundaries.
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