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Extended Abstract

In the present work, a physics-informed neural network (PINN) [1] is employed to solve hyperelastic
problems that are subjected to displacement loads. A hyperelastic plate subjected to displacement
at one end is considered as shown in Fig. 1. Deformation analysis of such a plate is done using the
PINN model and the results are compared with finite element method (FEM).

Figure 1: Configuration of hyperelastic plate (Neo-Hookean material) of length L = 2m under where
initial displacement u0 = -0.2 m is applied on the top face.

In the PINN model, the loss function is composed of the residuals from the governing equations
as well as the boundary conditions. We use the deep collocation method (DCM) [2] to predict the
displacement of the hyperelastic plate by minimizing the loss given as

L = (∇XP + fB)
2
+ (u− u∗)2 + (P ·N − t∗)

2 (1)

where X: initial configuration, P : first Piola-Kirchhoff stress, fB: body force, u: displacement,
u∗: prescribed displacement at boundary, N : normal vector, and t∗: applied traction. In Eq. 1, the
first, second, and third terms refer to the residual of the governing equation, the Dirichlet boundary
condition, and the Neumann boundary condition, respectively.

The network consists of 3 hidden layers with 30 hidden neurons in each layer. The network is trained
initially for 1200 epochs using the Adam optimizer [3] and then trained for another 300 epochs with
the L-BFGS optimizer [4] for better accuracy and faster convergence. This neural network predicts
the deflections (ux,uy) in x- and y-directions given the coordinates (x, y) in the domain. Figures 2
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and 3 show the deflection contours of the plate obtained from the PINN model. No labeled data in
terms of given deflections or stresses are used to train the PINN model.

(a) FEM solution (ūx) (b) PINN solution (ux) (c) Error = ūx − ux

Figure 2: Contour plots of x-deflection (ux) and the error of the plate over the domain.

(a) FEM solution (ūy) (b) PINN solution (uy) (c) Error = ūx − ux

Figure 3: Contour plots of y-deflection (uy) and the error of the plate over the domain.

The PINN model is able to capture the deformation of the hyperelastic plate. This study explores the
use of PINN to analyze the nonlinear deformation of hyperelastic materials.

References
[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-

ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–707, 2019.

[2] D. W. Abueidda, Q. Lu, and S. Koric. Meshless physics-informed deep learning method for
three-dimensional solid mechanics. International Journal for Numerical Methods in Engineering,
122(23):7182–7201, 2021.

[3] D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[4] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

2


