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Abstract

Deep learning is emerging as a powerful tool for enhancing sub-grid scale (SGS)
turbulence models used in large eddy simulations (LES). By employing a differ-
entiable turbulence solver and physics-inspired neural networks, we’ve developed
highly accurate and adaptable SGS models for 2D turbulent flows. Our analysis
reveals that incorporating small-scale non-local information is crucial for effective
modeling, while large-scale features can refine the pointwise accuracy of the solu-
tion. We’ve demonstrated that the velocity gradient tensor can be directly mapped
to SGS stress by decomposing inputs and outputs into isotropic, deviatoric, and
anti-symmetric components. Our model excels in generalizing to various flow
conditions, including different Reynolds numbers and forcing. We’ve compared
our differentiable physics approach to offline, a-priori learning, finding that our
hybrid solver-in-the-loop method offers the best balance of computational effi-
ciency, accuracy, and generalization. Our findings provide practical guidelines for
developing deep-learning-based SGS models that can effectively capture turbulence
dynamics.

We propose a novel approach to data-driven turbulence modeling using differentiable computational
fluid dynamics (CFD) solvers. By backpropagating a-posteriori errors to the turbulence model
parameters, we can refine the model’s accuracy. This ’differentiable turbulence’ approach offers a
distinct advantage over traditional machine learning methods like reinforcement learning, which
often struggle with generalization to unseen flow conditions. While several previous studies have
explored purely machine learning models for turbulence forecasting[Schiff et al., 2024, Brandstetter
et al., 2022, Chakraborty et al., 2024], our approach leverages the underlying physics through a
differentiable CFD solver. Figure 1 shows the architecture of the differentiable algorithm that we
developed. Further details on the architecture is mentioned in Shankar et al. [2024].

We tried various ML models like Convolution Neural Networks(CNN), Fourier Neural Opera-
tors(FNO), Multi-Layer Perceptron(MLP) and their combinations. We trained the model on decaying
turbulence at Reynold’s Number(Re) 1000(DE) and tested to various other configurations like forced
turbulence at Re 1000(G1), Re 30(G2), Re 105(G3) and Re 8000 with alternate forcing direction.
Figure 2 shows that the model generalizes to various flow parameters along with improved perfor-
mance compared to the Smagorinsky model for correlation with DNS. We found that non-locality and
network architecture significantly influence performance and a-posteriori learning improves results
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Figure 1: A diagram illustrating the deep learning-integrated solution algorithm. At each time step,
the subgrid stress is calculated using a combination of the eddy-viscosity term (τsmag) and a machine
learning (ML) contribution (M). The ML contribution is generated by a neural network (fθ) with
trainable parameters, applied to transformed input (ϕin) and output (ϕout) data. The combined
subgrid stress is then used in the LES equations, which are solved using standard numerical methods.
The solution trajectory is compared to the ground truth DNS field, and a loss is calculated based on
partial (i.e., subsampled) observations. Since the solution algorithm is differentiable, the loss can be
backpropagated through all time steps and linear solves, allowing for updates to the neural network’s
trainable parameters.

compared to a-priori learning. Hybrid deep learning-solver algorithms offer potential for cheap and
accurate CFD simulations due to their ability to incorporate physics. Future work will investigate the
application of this approach to more complex wall-bounded flows.
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Figure 2: Summary of predictions from the CNN+FNO-MFS model. The left column displays
an example predicted vorticity trajectory for each dataset compared with the true field. The right
column shows the ensemble average energy spectra and velocity correlation over time for each dataset.
Comparisons to baseline SMAG and no turbulence model are included. The CNN+FNO-MFS model
improves over the baseline in both metrics for nearly every case. Only in the low Reynolds number
dataset G2 does the model overpredict energy at the highest wavenumbers.
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