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Abstract

Predicting the long-term behavior of chaotic systems remains a formidable chal-
lenge due to their extreme sensitivity to initial conditions and the inherent limi-
tations of traditional data-driven modeling approaches. This paper introduces a
novel framework that addresses these challenges by leveraging the recently pro-
posed multi-step penalty (MP) optimization technique. Our approach extends the
applicability of MP optimization to a wide range of deep learning architectures,
including Fourier Neural Operators and UNETs. By introducing penalized local
discontinuities in the forecast trajectory, we effectively handle the non-convexity
of loss landscapes commonly encountered in training neural networks for chaotic
systems. We demonstrate the effectiveness of our method through its application
to two challenging use-cases: the prediction of flow velocity evolution in two-
dimensional turbulence and ocean dynamics using reanalysis data. Our results
highlight the potential of this approach for accurate and stable long-term prediction
of chaotic dynamics, paving the way for new advancements in data-driven modeling
of complex natural phenomena.

1 Introduction
Chaotic systems are ubiquitous in nature, encompassing fields as diverse as meteorology, fluid
dynamics, and chemical reactions. They exhibit complex multi-scale dynamics, without any scale
separation, making their forecasts extremely challenging. They are also characterized by their
extreme sensitivity to initial conditions, meaning a small perturbation in the initial condition leads to
completely diverging trajectories over time. A deterministic long-term prediction for chaotic systems
is irrelevant due to their very nature. Therefore, several current works on data driven long term
prediction of chaotic systems focus on preserving the invariant statistics of the system[Linot et al.,
2023, Schiff et al., 2024, Li et al., 2021, Guan et al., 2024]. However, minimizing the deviations
from ground truth in one autoregressive time step of prediction using a mean-squared error, typically
used to optimize ML models, is not effective for long term dynamics. Recent developments have
tried to tackle this limitation by several techniques like using multiple timesteps for accumulating
errors before gradient computation [Keisler, 2022], including structures from governing differential
equations[Linot et al., 2023] and implementing physical laws in optimization [Raissi et al., 2019].

In this work, we focus on the challenges data-driven ML models trained using multiple timesteps
(rollouts) face for predicting chaotic systems. Gradient-based optimization used in neural networks,
aiming to minimize the difference between predictions and ground truth, proves particularly difficult
for such systems. The extreme sensitivity to perturbations leads to exploding gradients during
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optimization for any long term objective with underlying chaotic dynamics [Lea et al., 2000].
Additionally, even a theoretically convex objective function becomes highly non-convex in numerical
implementation when involving long chaotic trajectories, often trapping the optimization process
in sub-optimal local minima [Chung and Freund, 2022]. For more details on non-convexity and
loss landscape we refer readers to Chakraborty et al. [2024]. This challenge shares similarities with
the well-known exploding/vanishing gradient problem in deep learning [Hanin, 2018, Philipp et al.,
2017]. Similar to how chaotic dynamics evolve, the repeated application of deep neuron layers can
cause extreme gradients while automatic differentiation, obstructing the training process. Although
there are some previous works by the machine learning community(Refer section 2 in Chakraborty
et al. [2024]) trying to tackle this issue, it is still an open problem and an area of active research.

A solution to the exploding gradients problem, proposed by Blonigan et al. [2014] is the Lease Square
Shadowing (LSS) method. They use the shadowing lemma, which states that there exists a trajectory
that always stays close to the reference trajectory with slightly perturbed initial conditions. The
brute-force computation of shadowing lemma requires a cubic cost with respect to the number of
parameters rendering it unusable for deep learning. Chung and Freund [2022] introduced the multi-
step penalty(MP) optimization which uses segmented time intervals and introduces penalized local
discontinuities to optimize the objective along with minimizing the discontinuities. As an alternative
to LSS method, Chakraborty et al. [2024] showed that the MP optimization can reduce the gradient
computation cost from cubic to linear with respect to the number of parameters. They implemented
it on several chaotic systems like Lorenz, 2D turbulence and weather to achieve long term stability.
However, the dynamical core of their work was based specifically on the Neural Ordinary Differential
Equations [Chen et al., 2018]. In this paper, we propose a modified extension of the MP optimization
algorithm to other deep learning algorithms that can predict dynamics autoregressively, thereby
assessing the general applicability of the optimization technique. We implement it on two popular
deep learning architectures for dynamical systems, namely the Fourier Neural Operator(Li et al.
[2020]) and UNET (Ronneberger et al. [2015]). We focus on two chaotic dynamical systems - High
Reynolds number (Re ∼ 105) 2D turbulence with Kolmogorov forcing and the northwest Atlantic
Ocean western boundary current (the Gulf Stream) dataset introduced in Chattopadhyay et al. [2024].

2 Methodology
Let us consider an operator S that advances the state q of a dynamical system in time. It can be
considered as the theoretical solution of any underlying governing differential equation that controls
the dynamics of a system. So, the state evolution can be given as,

qt = S(qt−1) = S(S(S(...S(q0)))) = St(q0) (1)

where qt is the state at time t. S can be approximated by a neural network architecture Fθ(q),
depending on learnable parameters θ. The parameters are obtained by minimizing the mismatch from
ground truth data (with discrete index i) given by a 1 step loss function,

L1 = Ei [∥Fθ(qi)− S(qi)∥] (2)

The popular multi-rollout loss function, LM used to train several state-of-the-art models is defined as

LM = Ei

[
t=n∑
t=1

∥∥λ(t)(F t
θ(qi)− St(qi))

∥∥] (3)

where n is the number of rollouts that the training sees and λ(t) is a hyper-parameter that gives
lower weights to mismatch in trajectories that are farther in time. Furthermore, the ’Pushforward
Trick’ introduced in Brandstetter et al. [2022] can be used to reduce the computational cost and
induce stability by breaking the computational graph between intermediate rollouts. However, these
techniques are themselves insufficient to capture the invariant metric of the underlying dynamical
system for prediction of chaotic systems (Schiff et al. [2024]). The MP method introduces learnable
intermediate discontinuities in the long trajectory and adds a penalty term to the rollout loss defined
in Equation 3 penalizing the magnitude of the discontinuities. Therefore, the problem of extreme
gradients can be overcome and the trajectory learned is stable without explicitly specifying invariant
properties in the loss function as in Schiff et al. [2024] which are either unknown or computationally
expensive to calculate.
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Figure 1: A schematic for MP optimization. The model F can be any autoregressive machine learning
model. The intermediate discontinuity δ is introduced after every r rollouts.

As shown in Figure 1, we augment the ground truth loss(LGT ) with a penalty loss(LP ) as,

LMP = Ei

[
t=sr∑
t=1

∥∥λ(t)(F t
θ(qi)− St(qi))

∥∥]
︸ ︷︷ ︸

LGT

+µ

s∑
k=1

∥δk∥︸ ︷︷ ︸
LP

(4)

where r is the number of rollouts before introducing a discontinuity, s is the number of splits (discon-
tinuities) and δs are the introduced discontinuities (learnable parameters). This is a modification from
the previous implementations of MP [Chung and Freund, 2022, Chakraborty et al., 2024] where the
intermediate states were learnable. We found the proposed approach to be more scalable for larger
systems and stable during training. However, after every r rollouts we detached the computational
graph before introducing the discontinuities δ, so that gradients are not propagated through the entire
trajectory. The penalty strength µ is a hyperparameter that is gradually increased to achieve continuity
in time. It is typically started with a very low value(10−5 in our experiments) and then gradually
increased. We also start with a single rollout (r=1) and a single discontinuity (s=1) in the trajectory
which are gradually increased to learn longer trajectoies. Further details on tuning the hyperparame-
ters of MP method are provided in Chakraborty et al. [2024]. The loss is backpropagated through
the computational graph to compute the gradients with respect to the set of learnable parameters
θs and δs using automatic differentiation. The intermediate discontinuities are introduced only in
training and not used in inference. Techniques like the Pushforward Trick [Brandstetter et al., 2022]
and weighting trajectories that are closer in time can also be used with the MP optimization. Any
other improvement like the Maximum Mean Discrepancy (MMD) loss introduced in Schiff et al.
[2024] can be easily extended to MP method for further improvement. However, we note that the
these additional invariant statistics based losses add significant computational overhead (requiring
long-term integration for each gradient computation). The MP approach seeks to improve on standard
autoregressive model training without this overhead.

3 Results
3.1 Kolmogorov Flow
This section evaluates the performance of our proposed framework on two-dimensional homogeneous
isotropic turbulence driven by Kolmogorov forcing, governed by the incompressible Navier-Stokes
equations. These experiments aim to assess MP optimization’s capabilities for improving performance
of the Fourier Neural Operator. Forced two-dimensional turbulence, a classic example of chaotic
dynamics, has become a standard benchmark for ML methods used in dynamical system prediction
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Figure 2: Vorticity of 2D Kolmogorov flow from predicted velocity fields. ’t’ here is the rollout step
of the model.

(Stachenfeld et al. [2021], Brandstetter et al. [2022], Schiff et al. [2024]). The Reynolds number
Re = 105 chosen for this study. The initial condition is a randomly generated divergence-free
velocity field Kochkov et al. [2021]. For more details on dataset construction, refer to the work by
Shankar et al. [2023]. The trajectories are temporally sub-sampled empirically after flow reaches the
chaotic regime to guarantee sufficient separation between snapshots. It can be observed in Figure 2
that the the predictions match the ground truth closely in the starting timesteps and then diverge as
a property of chaotic system. However, both FNO and MP-FNO shows no sign of instability even
after a high number of autoregressive rollout. The MP optimization clearly improves upon the vanilla
FNO for an invariant metric - the energy spectrum, and the correlation with DNS as shown in Figure
3. The latter also demonstrates how the MP optimization improves accuracy with greater integration
duration.

a) b)

Figure 3: A comparison between FNO and MP-FNO for (a) angle-averaged total kinetic energy
spectrum and (b) correlation with DNS. In (a) we check the performance for an invariant statistic, and
for (b) we assess how the MP FNO technique improves accuracy with forecast duration compared to
vanilla FNO.

3.2 Ocean Reanalysis Data
In this experiment we implement the MP algorithm to predict the sea-surface height (SSH), longitu-
dinal (SSU), and meridional (SSV) velocities of the northwest Atlantic Ocean’s western boundary
extending from 92◦W into the Atlantic 75◦W in the Gulf of Mexico (GoM). For this, we have used
the GLORYS version 4 [Garcia and Brown, 2021] reanalysis dataset, which is an eddy-permitting
dataset at 1

12

◦ (8 Km). The training data (available daily) is temporally sub-sampled by a factor of 3
to keep sufficient distinction between the snapshots. We implement the MP algorithm with a UNET
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Figure 4: Prediction performance of UNET and MP-UNET for the GoM LCE shedding event: Eddy
Sverdrup

[Ronneberger et al., 2015] architecture and compare the predictions for a test (unseen) time period of
a major GoM Loop Current Eddies (LCE) shedding event: Eddy Sverdrup (Jul 2019-Jan 2020).

Figure 4 shows that both UNET and MP-UNET captures the dynamics of the data accurately for the
time-period of the eddy event. We also found out that the vanilla UNET shows signs of instability
after longer periods of time whereas MP optimization makes it stable for over 270 days while testing.
However, to delve deeper into the results we compare root-mean-square error (RMSE) from ground
truth for the model predictions. MP-UNET performs the best in long term as evident from Figure 5.

Figure 5: RMSE comparison between UNET, MP-UNET and Persistence. Persistence is an elemen-
tary model used to compare the performance of other models. It assumes that the weather is static
and the initial condition itself is the forecast.

This also demonstrates the potential for the MP technique to improve neural forecasting applications
in real-world use cases, for example in the earth sciences [Kashinath et al., 2021].

4 Conclusion
This paper focuses on the challenges posed by the long-term prediction of chaotic systems. Our
proposed method provides a modified extension of the multi-step penalty(MP) optimization frame-
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work to a broader class of deep learning models such as Fourier Neural Operators and UNETs. We
demonstrate its advantage by forecasting challenging chaotic systems such as high Reynolds number
2D turbulence and the Gulf Stream ocean reanalysis dataset. The MP optimization based architectures
show more stability in the long term and is more accurate in short term compared to their vanilla
counterparts without any significant overhead in computational cost. This work contributes to the
field of data-driven modeling of chaotic systems and opens new avenues to explore and gain insight
into complex natural phenomena.
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