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Abstract

Recently, improvements in computational capabilities have triggered a surge in
the use of machine learning (ML) models for various applications. One notable
application of these advancements is the optimization of computational processes
in contact mechanics. This involves a computationally demanding step known as
contact search, which comprises global and local contact search. Global contact
search identifies potential contact points between bodies, while local search pin-
points the exact pairs of points in contact [3].Oishi and Yoshimura [2] developed
an ANN model that accelerated the local contact search.
In the present work, five distinct ML models—multiple linear regression, polyno-
mial regression, deep neural network, decision tree, random forest, and extreme
gradient boosting (XGBoost) are chosen based on their unique capabilities. These
models are employed to predict local parametric coordinates (ξ, η) . The models
were provided with input data consisting of variations in nodal coordinates for a 4
noded quadrilateral, along with corresponding slave points. Our analysis revolves
around assessing these models in terms of computational efforts and efficiency
as they are employed to predict the local parametric coordinates. This compar-
ative evaluation sheds light on the respective strengths and weaknesses of each
model, offering valuable insights for optimizing computational efficiency in contact
mechanics applications.

1 Machine Learning Models

In the realm of ML, various models and algorithms offer a wide array of tools to tackle diverse
data-driven challenges. For our present study, suitable models are selected based on their range
in complexity and ability to exhibit unique abilities to fit the dataset. Among the models under
consideration, multiple linear regression is considered for understanding the relationships between
multiple predictors and a target variable, polynomial regression to capture nonlinear patterns, and
DNN for their capacity to learn intricate patterns [1]. Decision Trees is taken for their interpretability,
random forests for ensemble learning, and XGBoost for gradient-boosted predictions [1]. Each
model is carefully selected to address specific characteristics of the dataset and contribute to the
comprehensive understanding of our study’s domain.
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2 Data Generation

In this approach, a 4-noded quadrilateral element with initially 15 degrees of freedom (12 from the
element and 3 from the slave point) is simplified to 7 degrees of freedom. This is done as follows. Two
nodes are fixed at (0, 0, 0) and (1, 0, 0), reducing dimensionality and complexity by concentrating on
variations in two dimensions. Third node is varied within the region bounded by x = 0, x = 2, y = 0,
and y = 1, while fourth node varies within x = −1, x = 1, y = 0, and y = 1. Geometric checks
ensure segments are between 0.1 and 1 in length and angles between 10◦ and 170◦. Five thousand
valid quadrilateral elements are generated for machine learning. Then, for each quadrilateral, ten
thousand slave points are created within a 3D box bounded by x = ±1.5, y = ±1.5, and z = ±3.
Thus, the problem involves 7 degrees of freedom consisting of nodal coordinates and slave point
positions.

3 Results and Discussions

3.1 Hyperparameter Tuning

Hyperparameter tuning [4] is a crucial aspect of optimizing ML models, involving the systematic
search for the most effective configuration of parameters that are not learned during training. These
parameters, known as hyperparameters, play a pivotal role in determining a model’s performance
and generalization ability [4]. In the present study, Random search is employed as the primary hyper-
parameter tuning technique across various models. Table 1 discusses the various hyperparameters
used in different models, their importance, and the best selected parameters for the models.

Table 1: Hyperparameter selection for different ML models

ML model Hyperparameters Optimum
hyperparamter

Polynomial regression Polynomial degree 2

DNN Hidden layers 3
Neurons per layer 24
Activation function Sigmoid
Learning rate 0.01
Batch size 32

Decision tree Maximum depth None
Minimum samples split 5
Minimum samples leaf 2
Maximum feature Automatic

Random forest Number of estimators 135

XGBoost Number of estimators 170
Learning rate 0.1
Subsample 0.8
Column Sample by Tree 0.7
RT* for minimum child weight (γ) 0.2
L1 weight regularization (α) 0.2
L2 weight regularization (λ) 0.2

* : Regularization term

3.2 Error Assessment Across Diverse ML Models

A total of 2185256 data points were generated. A split ratio of 80 to 20 was used to divide it into
training and test set. For the subsequent error analysis of the diverse machine learning models,
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two key metrics, namely Mean Squared Error (MSE) and Coefficient of determination (R2), are
considered. The MSE, calculated as the average of the squared difference between the predicted and
actual values, serves as a robust measure of a models accuracy

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

where n is the number of data points, Yi is the actual value, and Ŷi is the predicted value. In the
present study, the are ξ and η coordinates of the closest point projection in the target segment.

On the other hand, R2, is employed to gauge how well the independent variables explain the variance
in the dependent variable. The values of R2 ranges from 0 to 1, where higher values indicate a better
fit. The expression for R2 is given by

R2 = 1−

n∑
i=1

(Yi − Ŷi)
2

n∑
i=1

(Yi − Ȳ )2
(2)

where n is the number of data points, Yi is the actual value, Ŷi is the predicted value, and Ȳ is the
mean of the actual values.

In Table 2, a comprehensive comparison of the training error for various ML models under consider-
ation is presented. The training error analysis of the Ml models in the provided table reveals their
performance in fitting the training data. Multiple linear regression shows a moderate fit with a MSE
of 0.046972 and a R2 of 0.853513, indicating it explains approximately 85.35% of the variance in
the training data. Polynomial regression demonstrates a very good fit, with an MSE of 0.001184 and
an R2 of 0.996317, explaining about 99.63% of the variance. DNN exhibits an excellent fit, with an
MSE of 0.000280 and an R2 of 0.999124, explaining approximately 99.91% of the variance. Decision
tree performs very well, with an MSE of 0.000527 and a R2 of 0.998357, explaining about 99.84%
of the variance. Random forest achieves exceptional performance with an MSE of 0.000121 and an
R2 of 0.999621, explaining approximately 99.96% of the variance. XGBoost, while still performing
well, has a higher training error compared to other models, with an MSE of 0.003454 and an R2 of
0.989229, explaining about 98.92% of the variance. These results indicate that Random forest and
DNN are particularly adept at capturing the underlying patterns in the training data, suggesting their
potential for accurate predictions on unseen data.

Similarly, Table 3 outlines the comparison of testing error for the same set of ML models. The
analysis of testing errors for various ML models in this study provides valuable insights into their
predictive performance. Among the models evaluated, Random forest emerges as the top performer,
achieving the lowest MSE of 0.000837 and the highest R2 value of 0.997391. This indicates Random
forest’s exceptional ability to capture complex patterns in the data and generalize well to unseen data.
Following closely behind is the DNN model, which demonstrates strong performance with an MSE
of 0.000321 and a R2 of 0.998997, suggesting its effectiveness in capturing intricate data patterns and
generalizing well to new data. Polynomial regression also performs well, with an MSE of 0.001765
and a R2 of 0.994512, highlighting the importance of considering non-linear relationships in the data.
The Decision Tree model, while not as accurate as Random forest or DNN, still performs reasonably
well with an MSE of 0.003247 and anR2 of 0.989880. XGBoost, while performing adequately,
falls slightly short compared to the other models, with an MSE of 0.003559 and a R2 of 0.988903.
These results underscore the significance of selecting the most suitable model for a given dataset and
research question, as different models excel in capturing different aspects of the data’s complexity.

Table 2: Training error for different ML models
ML model MSE R2

MLR 0.046972 0.853513
Polynomial regression 0.001184 0.996317
DNN 0.000280 0.999124
Decision tree 0.000527 0.998357
Random forest 0.000121 0.999621
XGBoost 0.003454 0.989229
MSE : Means Squared Error; MLR: Multiple Linear Regression
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Table 3: Testing error for different ML models
ML model MSE R2

MLR 0.046973 0.853511
Polynomial regression 0.001765 0.994512
DNN 0.000321 0.998997
Decision tree 0.003247 0.989880
Random forest 0.000837 0.997391
XGBoost 0.003559 0.988903
MSE : Means Squared Error; MLR: Multiple Linear Regression

4 Conclusion

The assessment of six regression models focuses on their accuracy as determined by error metrics,
offering insight into their respective trade-offs. The choice of a regression model should be based
on the specific accuracy requirements of a task. Models such as DNN may offer high accuracy but
could be complex in nature. Decision tree, random forest, and XGBoost provide a balanced approach,
delivering accurate results without sacrificing too much simplicity. Multiple Linear Regression,
while generally simpler, may not achieve the same level of accuracy as more complex models.
Understanding these trade-offs in accuracy is essential for selecting the most appropriate model for
any given application.
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