
Stochastic Subspace via Bootstrap for Characterizing
Model-form Uncertainty

Akash Yadav ∗

University of Houston
Houston, Texas, USA.
ayadav4@uh.edu

Ruda Zhang
University of Houston
Houston, Texas, USA.

rudaz@uh.edu

Abstract

We propose a probabilistic model of subspaces based on the Bootstrap method. It
is applicable to projection-based reduced-order modeling methods, such as proper
orthogonal decomposition. The stochastic subspace thus constructed can be used,
for example, to characterize model-form uncertainty in computational mechanics
and digital twinning. The proposed method has multiple desirable properties: (1) it
uses the empirical distribution of the data; (2) it satisfies linear constraints, such as
boundary conditions of all kinds, by default; (3) it has only one hyper-parameter,
which greatly simplifies training; and (4) its algorithm is very easy to implement.
We compare the proposed method with existing approaches in characterizing the
uncertainty of a dynamics model of a space structure.

1 Introduction

Model error is ubiquitous in computational engineering, but its probabilistic analysis has been
a notoriously difficult challenge. Unlike parametric uncertainties that are associated with model
parameters, model-form uncertainties concern the variability of the model itself, which are inherently
nonparametric (Morrison et al., 2018). A recent seminal work in model-form uncertainty merges ideas
from projection-based reduced-order modeling and random matrix theory (Soize and Farhat, 2016).
The key observation is that since a reduced-order basis (ROB) determines a reduced-order model
(ROM), randomizing the ROB also randomizes the ROM, which can be used for efficient probabilistic
analysis of model-form error. In this context, a few probabilistic models and estimation procedures
have been proposed to construct a stochastic ROB (Soize and Farhat, 2016; Zhang and Guilleminot,
2023). However, the existing methods have limitations in terms of practical application due to high
numbers of hyper-parameters, complex implementation, and poor uncertainty quantification (UQ).
This study aims to develop an efficient way to construct a stochastic subspace that is free from the
aforementioned limitations. The proposed method can be used to build surrogate models and digital
twins. We showcase its use in the characterization of model-form error.

2 Stochastic reduced-order modeling

High-dimensional model: In general, we consider a parametric nonlinear system given by a set of
ordinary differential equations (ODEs): ẋ = f(x, t;µ), with x ∈ Rn and t ∈ [0,∞), and is subject to
initial conditions x(0) = x0 and linear constraints B⊺x = 0, where B ∈ Rn×nCD . These equations
often come from a spatial discretization of a set of partial differential equations that govern a given
physical system, with dimension n≫ 1. We call this the high-dimensional model (HDM).

Reduced-order model: The Galerkin projection of the HDM onto a k-dim subspace V of the state
space Rn gives a reduced-order model (ROM). Let V ∈ St(n, k) be an orthonormal basis of the
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subspace V , the ROM can be written as: q̇ = V⊺ f(Vq, t;µ), with q ∈ Rk, x = Vq, and initial
conditions q(0) = V⊺x0. To satisfy the linear constraints, we must have B⊺V = 0. A common
way to find a reduced-order basis (ROB) V and the associated subspace V is proper orthogonal
decomposition (POD).

Stochastic reduced-order model: In this work, we use the stochastic subspace model in 3 to
derive a stochastic reduced-order model (SROM) from the HDM. As with POD, the stochastic basis
W satisfies the linear constraints B⊺W = 0 automatically. To find an optimal hyper-parameter
p ∈ [k,∞), we minimize E[|do(uE) − do(uL)|2], where uE is the experimental or ground-truth
observation of the output, uL is the low-fidelity prediction of the SROM, and do(u) := ∥u− uo

L∥L2

is the L2 distance to the low-fidelity prediction uo
L of a reference model. This objective function aims

to improve the consistency of the SROM in characterizing the error of the reference model, and it can
be optimized efficiently using any 1-D optimization scheme and point estimates using Monte Carlo.

3 Bootstrap: distribution-free modeling

Algorithm 1 SS-Bootstrap: Stochastic subspace via bootstrap.

Input: Ṽ; Σ̃;W̃; subspace dimension k ∈ {1, · · · , n}; resam-
ple size p ∈ {k, k + 1, · · · }; number of snapshot is m.

1: Generate vector b = (bi)
p
i=1 with bi

iid∼ U({1, · · · ,m})
2: M← Σ̃W̃(b, :)⊺
3: Truncated SVD: [Uk,∼,∼]← svds(M, k)

Output: W = ṼUk, an orthonormal basis of a random sub-
space sampled from the bootstrap model.

The bootstrap (Efron, 1979) is
a non-parametric sampling-based
approach to estimate the sam-
pling distribution of a statistic.
The stochastic subspace model is
derived by resampling the data
with replacement from the em-
pirical distribution and perform-
ing POD. In this work, we in-
troduce a new class of stochas-
tic subspace models based on the
bootstrap method, incorporating
a hyper-parameter p to control the number of data points sampled. Algorithm 1 gives a procedure for
sampling stochastic reduced order basis from the SS-Bootstrap model.

4 Numerical experiment: dynamics problem of a space structure
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Figure 1: (a) space structure; (b) loading.

We consider a major component of a
space structure given an impulse load
in the z-direction, see Fig. 1. We take
the quantity of interest (QoI) to be the x-
velocity of a critical point at one of the es-
sential components. The HDM is solved
using the Newmark-β time integration
scheme with a time step of 5 × 10−2

ms. We construct a ROM with dimen-
sion k = 10 via POD, and characterize
its model error. From Fig. 2 and Fig. 3
we see that the 95% PI of the Bootstrap
method is consistent and much sharper than that of the NPM. While both methods are mostly consis-
tent, Bootstrap is at least a few times sharper than NPM, depending on the QoI being displacement,
velocity, or acceleration.

5 Conclusion

We introduced a stochastic subspace model which is used to characterize model-form error. It is
simple, consistent, and very easy to train. Via numerical example, we reveal the characteristics of
this model, establish its consistency, and quantify its remarkable improvement in sharpness over
current methods. It opens up a promising path to the challenging problem of model-form uncertainty.
Furthermore, the developed surrogate model, i.e., the stochastic subspace model via bootstrap, can be
used in different applications like digital twins and design and optimization under uncertainty.
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Figure 2: Dynamic prediction of the NPM model
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Figure 3: Dynamic prediction of the Bootstrap model
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