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Abstract 

 Predictive maintenance in the aerospace industry, typically relying on manual 
 inspections and basic statistical models, is crucial for reducing downtime, costs, and 
 ensuring safety. This study introduces and compares two advanced deep learning 
 models, a CNN-LSTM and an Attention-based CNN-LSTM, designed to improve 
 predictive accuracy for Remaining Useful Life (RUL) estimation. Using NASA’s C- 
 MAPSS dataset, these models capture spatial-temporal dependencies and focus on 
 critical features. The results show that attention mechanisms significantly enhance 
 both interpretability and accuracy, making these models widely applicable for more 
 reliable and actionable insights in predictive maintenance. 

 

 1 Introduction 

In the aerospace industry, where high-performance machinery like turbofan engines is crucial, accurate 
Remaining Useful Life (RUL) prediction is essential for ensuring safety and cost-effectiveness (Zhao et al., 
2017; Babu et al., 2016). Machine learning, particularly deep learning, has shown great potential in predictive 
maintenance by modeling complex, non-linear relationships in large datasets. CNNs are effective in 
extracting spatial features from time-series data, while LSTMs capture long-term dependencies, making 
them ideal for analyzing sensor data from aerospace systems (Zheng et al., 2017). This paper compares 
two deep learning architectures for RUL prediction: a CNN-LSTM model and a CNN-LSTM model with 
attention layers. Using NASA’s C-MAPSS dataset, we evaluate how attention mechanisms affect predictive 
accuracy and model interpretability. The goal is to assess whether attention improves RUL predictions and 
provides better insights into critical operational factors (Saxena et al., 2008, Selvamurugan, A. et al.). 

 

 2 Proposed Methodology 

The CNN-LSTM model leverages the strengths of both CNNs and LSTMs to capture spatial and temporal         
patterns from time-series data. To improve the interpretability and performance of the CNN-LSTM 
model, we propose an enhanced architecture that incorporates attention mechanisms. Attention layers are 
added to allow the model to dynamically focus on critical parts of the input sequence, which can improve 
the model’s ability to predict RUL more accurately. 

 

 2.1  Dataset and Preprocessing 

 The NASA C-MAPSS dataset (Saxena et al., 2008) is a widely used benchmark for predictive 
maintenance, simulating turbofan engine sensor data under varying operational conditions and 
degradation modes. The Remaining Useful Life (RUL) is calculated by subtracting the current time step 
from the total number of cycles for each engine. After performing correlation analysis, highly correlated 
features like sm_9 were removed to reduce redundancy. Selected sensor features (e.g., sm_2, sm_3, sm_7) 
were normalized using a MinMaxScaler to ensure consistent scaling between 0 and 1, improving model 
convergence. The dataset was split by engine IDs, with 80% used for training  and 20% reserved for testing, 
ensuring that each engine’s data was fully contained within either set to avoid data leakage. For sequence 
generation, sensor readings were divided into overlapping sequences of 50-time steps, paired with 
corresponding RUL labels, creating the necessary 3D input for the CNN-LSTM model, with dimensions for 
sequences, time steps, and features. 
 

 3 Implementation 

 The proposed CNN-LSTM and CNN-LSTM with Attention models were implemented using Tensor- Flow 
and trained on the NASA C-MAPSS dataset to predict the Remaining Useful Life (RUL) of turbofan 
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engines. The model architecture was compiled with the Adam optimizer, using a learning rate of 0.001 and 
a Mean Squared Error (MSE) loss function. 

The input sequence length was set to 50-time steps, and each input sample contained 13 features 

representing the selected sensor measurements. The CNN layers extract spatial features from the sensor 
data, while the LSTM layers capture temporal dependencies. In the attention-based model, attention 
layers were added to allow the model to focus on important time steps, enhancing interpretability and 
potentially improving predictive performance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Table 1: Comparison of CNN-LSTM and CNN-LSTM with Attention Architectures 

 

For training, the dataset was split into training and validation sets, with 80% of the data used for training 
and 20% for validation. The model was trained for 250 epochs with a batch size of 512. Early stopping was 
used to prevent overfitting, monitoring the validation loss and stopping the training when there was no 
further improvement. 
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Figure 1: CNN LSTM with Attention model 

performance 

 

Figure 2: CNN LSTM model performance 

 

  

 

Hyperparameter CNN-LSTM + Attention 
Model 

Learning Rate 0.001 
Attention 
Mechanisms 

2 attention layers 

Dropout Rate 0.2 

Optimizer Adam 
Loss Function Mean Squared Error (MSE) 

RMSE 

Model Train Test 

CNN LSTM 56.38 70.37 

CNN LSTM with 

Attention 
 

25.11 41.17 

 

Table 3: Performance Metrics 
 

Table 2: Hyperparameters for CNN-LSTM 

+ Attention Model 

 

 

CNN-LSTM Architecture CNN-LSTM with Attention Architecture 

 

 
 Layer (Type)  

Input Layer (50, 13) 
Conv1D (32 filters, kernel size=3) 
Conv1D (32 filters, kernel size=3) 
Conv1D (64 filters, kernel size=3) 
Conv1D (64 filters, kernel size=3) 
Conv1D (128 filters, kernel size=3) 

Flatten 
Reshape (50, 128) 
LSTM (50 units) 
LSTM (50 units) 
LSTM (50 units) 

Dense (50, 1) 

 Layer (Type)  

Input Layer (50, 13) 
Conv1D (32 filters, kernel size=3) 
Conv1D (32 filters, kernel size=3) 
Conv1D (64 filters, kernel size=3) 
Conv1D (64 filters, kernel size=3) 
Conv1D (128 filters, kernel size=3) 

Flatten 
Reshape (50, -1) 
LSTM (50 units) 
LSTM (50 units) 

Attention (LSTM output with itself) 
Concatenate (LSTM output and Attention output) 

Dense (50 units, ReLU) 
Dropout (0.2) 

Attention (Dropout output with itself) 
Concatenate (Dropout and Attention output) 

Dense (1 unit) 
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Result 

The CNN LSTM Attention model outperforms the CNN LSTM model, with a training loss of 25.11 and test 
loss of 41.17, compared to 56.38 and 70.37, respectively, for the CNN LSTM model. The attention 
mechanism improves performance by helping the model focus on the most relevant features in the time series 
data, leading to better prediction accuracy and lower loss. This selective focus enhances the model’s ability 
to generalize, resulting in more effective predictions of the Remaining Useful Life (RUL) in predictive 
maintenance scenarios. 
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